142
142
<body lang="es" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
144
144
<a name="Funciones-el_00edpticas"></a>
146
146
<table cellpadding="1" cellspacing="1" border="0">
147
<tr><td valign="middle" align="left">[<a href="maxima_16.html#SEC54" title="Previous section in reading order"> < </a>]</td>
148
<td valign="middle" align="left">[<a href="#SEC56" title="Next section in reading order"> > </a>]</td>
147
<tr><td valign="middle" align="left">[<a href="maxima_16.html#SEC53" title="Previous section in reading order"> < </a>]</td>
148
<td valign="middle" align="left">[<a href="#SEC55" title="Next section in reading order"> > </a>]</td>
149
149
<td valign="middle" align="left"> </td>
150
<td valign="middle" align="left">[<a href="maxima_16.html#SEC52" title="Beginning of this chapter or previous chapter"> << </a>]</td>
150
<td valign="middle" align="left">[<a href="maxima_16.html#SEC51" title="Beginning of this chapter or previous chapter"> << </a>]</td>
151
151
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
152
<td valign="middle" align="left">[<a href="maxima_18.html#SEC59" title="Next chapter"> >> </a>]</td>
152
<td valign="middle" align="left">[<a href="maxima_18.html#SEC58" title="Next chapter"> >> </a>]</td>
153
153
<td valign="middle" align="left"> </td>
154
154
<td valign="middle" align="left"> </td>
155
155
<td valign="middle" align="left"> </td>
156
156
<td valign="middle" align="left"> </td>
157
157
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
158
158
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
159
<td valign="middle" align="left">[<a href="maxima_76.html#SEC287" title="Index">Index</a>]</td>
159
<td valign="middle" align="left">[<a href="maxima_78.html#SEC302" title="Index">Index</a>]</td>
160
160
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
162
162
<h1 class="chapter"> 17. Funciones elípticas </h1>
164
164
<table class="menu" border="0" cellspacing="0">
165
<tr><td align="left" valign="top"><a href="#SEC56">17.1 Introducción a las funciones e integrales elípticas</a></td><td> </td><td align="left" valign="top">
167
<tr><td align="left" valign="top"><a href="#SEC57">17.2 Funciones y variables para funciones elípticas</a></td><td> </td><td align="left" valign="top">
169
<tr><td align="left" valign="top"><a href="#SEC58">17.3 Funciones y variables para integrales elípticas</a></td><td> </td><td align="left" valign="top">
165
<tr><td align="left" valign="top"><a href="#SEC55">17.1 Introducción a las funciones e integrales elípticas</a></td><td> </td><td align="left" valign="top">
167
<tr><td align="left" valign="top"><a href="#SEC56">17.2 Funciones y variables para funciones elípticas</a></td><td> </td><td align="left" valign="top">
169
<tr><td align="left" valign="top"><a href="#SEC57">17.3 Funciones y variables para integrales elípticas</a></td><td> </td><td align="left" valign="top">
175
175
<a name="Introducci_00f3n-a-las-funciones-e-integrales-el_00edpticas"></a>
176
176
<table cellpadding="1" cellspacing="1" border="0">
177
<tr><td valign="middle" align="left">[<a href="#SEC55" title="Previous section in reading order"> < </a>]</td>
178
<td valign="middle" align="left">[<a href="#SEC57" title="Next section in reading order"> > </a>]</td>
177
<tr><td valign="middle" align="left">[<a href="#SEC54" title="Previous section in reading order"> < </a>]</td>
178
<td valign="middle" align="left">[<a href="#SEC56" title="Next section in reading order"> > </a>]</td>
179
179
<td valign="middle" align="left"> </td>
180
<td valign="middle" align="left">[<a href="#SEC55" title="Beginning of this chapter or previous chapter"> << </a>]</td>
181
<td valign="middle" align="left">[<a href="#SEC55" title="Up section"> Up </a>]</td>
182
<td valign="middle" align="left">[<a href="maxima_18.html#SEC59" title="Next chapter"> >> </a>]</td>
180
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
181
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
182
<td valign="middle" align="left">[<a href="maxima_18.html#SEC58" title="Next chapter"> >> </a>]</td>
183
183
<td valign="middle" align="left"> </td>
184
184
<td valign="middle" align="left"> </td>
185
185
<td valign="middle" align="left"> </td>
186
186
<td valign="middle" align="left"> </td>
187
187
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
188
188
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
189
<td valign="middle" align="left">[<a href="maxima_76.html#SEC287" title="Index">Index</a>]</td>
189
<td valign="middle" align="left">[<a href="maxima_78.html#SEC302" title="Index">Index</a>]</td>
190
190
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
194
194
<h2 class="section"> 17.1 Introducción a las funciones e integrales elípticas </h2>
196
196
<p>Maxima da soporte para las funciones elípticas jacobianas y para las integrales elípticas completas e incompletas. Esto incluye la manipulación simbólica de estas funciones y su evaluación numérica. Las definiciones de estas funciones y de muchas de sus propiedades se pueden encontrar en Abramowitz y Stegun, capítulos 16-17, que es la fuente principal utilizada para su programación en Maxima, aunque existen algunas diferencias.
270
268
<a name="Funciones-y-variables-para-funciones-el_00edpticas"></a>
271
269
<table cellpadding="1" cellspacing="1" border="0">
272
<tr><td valign="middle" align="left">[<a href="#SEC56" title="Previous section in reading order"> < </a>]</td>
273
<td valign="middle" align="left">[<a href="#SEC58" title="Next section in reading order"> > </a>]</td>
270
<tr><td valign="middle" align="left">[<a href="#SEC55" title="Previous section in reading order"> < </a>]</td>
271
<td valign="middle" align="left">[<a href="#SEC57" title="Next section in reading order"> > </a>]</td>
274
272
<td valign="middle" align="left"> </td>
275
<td valign="middle" align="left">[<a href="#SEC55" title="Beginning of this chapter or previous chapter"> << </a>]</td>
276
<td valign="middle" align="left">[<a href="#SEC55" title="Up section"> Up </a>]</td>
277
<td valign="middle" align="left">[<a href="maxima_18.html#SEC59" title="Next chapter"> >> </a>]</td>
273
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
274
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
275
<td valign="middle" align="left">[<a href="maxima_18.html#SEC58" title="Next chapter"> >> </a>]</td>
278
276
<td valign="middle" align="left"> </td>
279
277
<td valign="middle" align="left"> </td>
280
278
<td valign="middle" align="left"> </td>
281
279
<td valign="middle" align="left"> </td>
282
280
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
283
281
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
284
<td valign="middle" align="left">[<a href="maxima_76.html#SEC287" title="Index">Index</a>]</td>
282
<td valign="middle" align="left">[<a href="maxima_78.html#SEC302" title="Index">Index</a>]</td>
285
283
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
289
287
<h2 class="section"> 17.2 Funciones y variables para funciones elípticas </h2>
292
290
<dt><u>Función:</u> <b>jacobi_sn</b><i> (<var>u</var>, <var>m</var>)</i>
293
<a name="IDX552"></a>
291
<a name="IDX566"></a>
295
293
<dd><p>Función elíptica jacobiana <em>sn(u,m)</em>.
299
297
<dt><u>Función:</u> <b>jacobi_cn</b><i> (<var>u</var>, <var>m</var>)</i>
300
<a name="IDX553"></a>
298
<a name="IDX567"></a>
302
300
<dd><p>Función elíptica jacobiana <em>cn(u,m)</em>.
306
304
<dt><u>Función:</u> <b>jacobi_dn</b><i> (<var>u</var>, <var>m</var>)</i>
307
<a name="IDX554"></a>
305
<a name="IDX568"></a>
309
307
<dd><p>Función elíptica jacobiana <em>dn(u,m)</em>.
313
311
<dt><u>Función:</u> <b>jacobi_ns</b><i> (<var>u</var>, <var>m</var>)</i>
314
<a name="IDX555"></a>
312
<a name="IDX569"></a>
316
314
<dd><p>Función elíptica jacobiana <em>ns(u,m) = 1/sn(u,m)</em>.
320
318
<dt><u>Función:</u> <b>jacobi_sc</b><i> (<var>u</var>, <var>m</var>)</i>
321
<a name="IDX556"></a>
319
<a name="IDX570"></a>
323
321
<dd><p>Función elíptica jacobiana <em>sc(u,m) = sn(u,m)/cn(u,m)</em>.
327
325
<dt><u>Función:</u> <b>jacobi_sd</b><i> (<var>u</var>, <var>m</var>)</i>
328
<a name="IDX557"></a>
326
<a name="IDX571"></a>
330
328
<dd><p>Función elíptica jacobiana <em>sd(u,m) = sn(u,m)/dn(u,m)</em>.
334
332
<dt><u>Función:</u> <b>jacobi_nc</b><i> (<var>u</var>, <var>m</var>)</i>
335
<a name="IDX558"></a>
333
<a name="IDX572"></a>
337
335
<dd><p>Función elíptica jacobiana <em>nc(u,m) = 1/cn(u,m)</em>.
341
339
<dt><u>Función:</u> <b>jacobi_cs</b><i> (<var>u</var>, <var>m</var>)</i>
342
<a name="IDX559"></a>
340
<a name="IDX573"></a>
344
342
<dd><p>Función elíptica jacobiana <em>cs(u,m) = cn(u,m)/sn(u,m)</em>.
348
346
<dt><u>Función:</u> <b>jacobi_cd</b><i> (<var>u</var>, <var>m</var>)</i>
349
<a name="IDX560"></a>
347
<a name="IDX574"></a>
351
349
<dd><p>Función elíptica jacobiana <em>cd(u,m) = cn(u,m)/dn(u,m)</em>.
355
353
<dt><u>Función:</u> <b>jacobi_nd</b><i> (<var>u</var>, <var>m</var>)</i>
356
<a name="IDX561"></a>
354
<a name="IDX575"></a>
358
356
<dd><p>Función elíptica jacobiana <em>nc(u,m) = 1/cn(u,m)</em>.
362
360
<dt><u>Función:</u> <b>jacobi_ds</b><i> (<var>u</var>, <var>m</var>)</i>
363
<a name="IDX562"></a>
361
<a name="IDX576"></a>
365
363
<dd><p>Función elíptica jacobiana <em>ds(u,m) = dn(u,m)/sn(u,m)</em>.
369
367
<dt><u>Función:</u> <b>jacobi_dc</b><i> (<var>u</var>, <var>m</var>)</i>
370
<a name="IDX563"></a>
368
<a name="IDX577"></a>
372
370
<dd><p>Función elíptica jacobiana <em>dc(u,m) = dn(u,m)/cn(u,m)</em>.
376
374
<dt><u>Función:</u> <b>inverse_jacobi_sn</b><i> (<var>u</var>, <var>m</var>)</i>
377
<a name="IDX564"></a>
375
<a name="IDX578"></a>
379
377
<dd><p>Inversa de la función elíptica jacobiana <em>sn(u,m)</em>.
383
381
<dt><u>Función:</u> <b>inverse_jacobi_cn</b><i> (<var>u</var>, <var>m</var>)</i>
384
<a name="IDX565"></a>
382
<a name="IDX579"></a>
386
384
<dd><p>Inversa de la función elíptica jacobiana <em>cn(u,m)</em>.
390
388
<dt><u>Función:</u> <b>inverse_jacobi_dn</b><i> (<var>u</var>, <var>m</var>)</i>
391
<a name="IDX566"></a>
389
<a name="IDX580"></a>
393
391
<dd><p>Inversa de la función elíptica jacobiana <em>dn(u,m)</em>.
397
395
<dt><u>Función:</u> <b>inverse_jacobi_ns</b><i> (<var>u</var>, <var>m</var>)</i>
398
<a name="IDX567"></a>
396
<a name="IDX581"></a>
400
398
<dd><p>Inversa de la función elíptica jacobiana <em>ns(u,m)</em>.
404
402
<dt><u>Función:</u> <b>inverse_jacobi_sc</b><i> (<var>u</var>, <var>m</var>)</i>
405
<a name="IDX568"></a>
403
<a name="IDX582"></a>
407
405
<dd><p>Inversa de la función elíptica jacobiana <em>sc(u,m)</em>.
411
409
<dt><u>Función:</u> <b>inverse_jacobi_sd</b><i> (<var>u</var>, <var>m</var>)</i>
412
<a name="IDX569"></a>
410
<a name="IDX583"></a>
414
412
<dd><p>Inversa de la función elíptica jacobiana <em>sd(u,m)</em>.
418
416
<dt><u>Función:</u> <b>inverse_jacobi_nc</b><i> (<var>u</var>, <var>m</var>)</i>
419
<a name="IDX570"></a>
417
<a name="IDX584"></a>
421
419
<dd><p>Inversa de la función elíptica jacobiana <em>nc(u,m)</em>.
425
423
<dt><u>Función:</u> <b>inverse_jacobi_cs</b><i> (<var>u</var>, <var>m</var>)</i>
426
<a name="IDX571"></a>
424
<a name="IDX585"></a>
428
426
<dd><p>Inversa de la función elíptica jacobiana <em>cs(u,m)</em>.
432
430
<dt><u>Función:</u> <b>inverse_jacobi_cd</b><i> (<var>u</var>, <var>m</var>)</i>
433
<a name="IDX572"></a>
431
<a name="IDX586"></a>
435
433
<dd><p>Inversa de la función elíptica jacobiana <em>cd(u,m)</em>.
439
437
<dt><u>Función:</u> <b>inverse_jacobi_nd</b><i> (<var>u</var>, <var>m</var>)</i>
440
<a name="IDX573"></a>
438
<a name="IDX587"></a>
442
440
<dd><p>Inversa de la función elíptica jacobiana <em>nc(u,m)</em>.
446
444
<dt><u>Función:</u> <b>inverse_jacobi_ds</b><i> (<var>u</var>, <var>m</var>)</i>
447
<a name="IDX574"></a>
445
<a name="IDX588"></a>
449
447
<dd><p>Inversa de la función elíptica jacobiana <em>ds(u,m)</em>.
453
451
<dt><u>Función:</u> <b>inverse_jacobi_dc</b><i> (<var>u</var>, <var>m</var>)</i>
454
<a name="IDX575"></a>
452
<a name="IDX589"></a>
456
454
<dd><p>Inversa de la función elíptica jacobiana <em>dc(u,m)</em>.
461
459
<a name="Funciones-y-variables-para-integrales-el_00edpticas"></a>
462
460
<table cellpadding="1" cellspacing="1" border="0">
463
<tr><td valign="middle" align="left">[<a href="#SEC57" title="Previous section in reading order"> < </a>]</td>
464
<td valign="middle" align="left">[<a href="maxima_18.html#SEC59" title="Next section in reading order"> > </a>]</td>
461
<tr><td valign="middle" align="left">[<a href="#SEC56" title="Previous section in reading order"> < </a>]</td>
462
<td valign="middle" align="left">[<a href="maxima_18.html#SEC58" title="Next section in reading order"> > </a>]</td>
465
463
<td valign="middle" align="left"> </td>
466
<td valign="middle" align="left">[<a href="#SEC55" title="Beginning of this chapter or previous chapter"> << </a>]</td>
467
<td valign="middle" align="left">[<a href="#SEC55" title="Up section"> Up </a>]</td>
468
<td valign="middle" align="left">[<a href="maxima_18.html#SEC59" title="Next chapter"> >> </a>]</td>
464
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
465
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
466
<td valign="middle" align="left">[<a href="maxima_18.html#SEC58" title="Next chapter"> >> </a>]</td>
469
467
<td valign="middle" align="left"> </td>
470
468
<td valign="middle" align="left"> </td>
471
469
<td valign="middle" align="left"> </td>
472
470
<td valign="middle" align="left"> </td>
473
471
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
474
472
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
475
<td valign="middle" align="left">[<a href="maxima_76.html#SEC287" title="Index">Index</a>]</td>
473
<td valign="middle" align="left">[<a href="maxima_78.html#SEC302" title="Index">Index</a>]</td>
476
474
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
480
478
<h2 class="section"> 17.3 Funciones y variables para integrales elípticas </h2>
484
482
<dt><u>Función:</u> <b>elliptic_f</b><i> (<var>phi</var>, <var>m</var>)</i>
485
<a name="IDX576"></a>
483
<a name="IDX590"></a>
487
485
<dd><p>Integral elíptica incompleta de primera especie, definida como