~baltix/+junk/irrlicht-test

« back to all changes in this revision

Viewing changes to source/Irrlicht/jpeglib/jidctfst.c

  • Committer: Mantas Kriaučiūnas
  • Date: 2011-07-18 13:06:25 UTC
  • Revision ID: mantas@akl.lt-20110718130625-c5pvifp61e7kj1ol
Included whole irrlicht SVN libraries to work around launchpad recipe issue with quilt, see https://answers.launchpad.net/launchpad/+question/165193

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
 * jidctfst.c
 
3
 *
 
4
 * Copyright (C) 1994-1998, Thomas G. Lane.
 
5
 * This file is part of the Independent JPEG Group's software.
 
6
 * For conditions of distribution and use, see the accompanying README file.
 
7
 *
 
8
 * This file contains a fast, not so accurate integer implementation of the
 
9
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 
10
 * must also perform dequantization of the input coefficients.
 
11
 *
 
12
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 
13
 * on each row (or vice versa, but it's more convenient to emit a row at
 
14
 * a time).  Direct algorithms are also available, but they are much more
 
15
 * complex and seem not to be any faster when reduced to code.
 
16
 *
 
17
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 
18
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 
19
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 
20
 * JPEG textbook (see REFERENCES section in file README).  The following code
 
21
 * is based directly on figure 4-8 in P&M.
 
22
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 
23
 * possible to arrange the computation so that many of the multiplies are
 
24
 * simple scalings of the final outputs.  These multiplies can then be
 
25
 * folded into the multiplications or divisions by the JPEG quantization
 
26
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 
27
 * to be done in the DCT itself.
 
28
 * The primary disadvantage of this method is that with fixed-point math,
 
29
 * accuracy is lost due to imprecise representation of the scaled
 
30
 * quantization values.  The smaller the quantization table entry, the less
 
31
 * precise the scaled value, so this implementation does worse with high-
 
32
 * quality-setting files than with low-quality ones.
 
33
 */
 
34
 
 
35
#define JPEG_INTERNALS
 
36
#include "jinclude.h"
 
37
#include "jpeglib.h"
 
38
#include "jdct.h"               /* Private declarations for DCT subsystem */
 
39
 
 
40
#ifdef DCT_IFAST_SUPPORTED
 
41
 
 
42
 
 
43
/*
 
44
 * This module is specialized to the case DCTSIZE = 8.
 
45
 */
 
46
 
 
47
#if DCTSIZE != 8
 
48
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 
49
#endif
 
50
 
 
51
 
 
52
/* Scaling decisions are generally the same as in the LL&M algorithm;
 
53
 * see jidctint.c for more details.  However, we choose to descale
 
54
 * (right shift) multiplication products as soon as they are formed,
 
55
 * rather than carrying additional fractional bits into subsequent additions.
 
56
 * This compromises accuracy slightly, but it lets us save a few shifts.
 
57
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
 
58
 * everywhere except in the multiplications proper; this saves a good deal
 
59
 * of work on 16-bit-int machines.
 
60
 *
 
61
 * The dequantized coefficients are not integers because the AA&N scaling
 
62
 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
 
63
 * so that the first and second IDCT rounds have the same input scaling.
 
64
 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
 
65
 * avoid a descaling shift; this compromises accuracy rather drastically
 
66
 * for small quantization table entries, but it saves a lot of shifts.
 
67
 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
 
68
 * so we use a much larger scaling factor to preserve accuracy.
 
69
 *
 
70
 * A final compromise is to represent the multiplicative constants to only
 
71
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
 
72
 * machines, and may also reduce the cost of multiplication (since there
 
73
 * are fewer one-bits in the constants).
 
74
 */
 
75
 
 
76
#if BITS_IN_JSAMPLE == 8
 
77
#define CONST_BITS  8
 
78
#define PASS1_BITS  2
 
79
#else
 
80
#define CONST_BITS  8
 
81
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
 
82
#endif
 
83
 
 
84
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 
85
 * causing a lot of useless floating-point operations at run time.
 
86
 * To get around this we use the following pre-calculated constants.
 
87
 * If you change CONST_BITS you may want to add appropriate values.
 
88
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 
89
 */
 
90
 
 
91
#if CONST_BITS == 8
 
92
#define FIX_1_082392200  ((INT32)  277)         /* FIX(1.082392200) */
 
93
#define FIX_1_414213562  ((INT32)  362)         /* FIX(1.414213562) */
 
94
#define FIX_1_847759065  ((INT32)  473)         /* FIX(1.847759065) */
 
95
#define FIX_2_613125930  ((INT32)  669)         /* FIX(2.613125930) */
 
96
#else
 
97
#define FIX_1_082392200  FIX(1.082392200)
 
98
#define FIX_1_414213562  FIX(1.414213562)
 
99
#define FIX_1_847759065  FIX(1.847759065)
 
100
#define FIX_2_613125930  FIX(2.613125930)
 
101
#endif
 
102
 
 
103
 
 
104
/* We can gain a little more speed, with a further compromise in accuracy,
 
105
 * by omitting the addition in a descaling shift.  This yields an incorrectly
 
106
 * rounded result half the time...
 
107
 */
 
108
 
 
109
#ifndef USE_ACCURATE_ROUNDING
 
110
#undef DESCALE
 
111
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
 
112
#endif
 
113
 
 
114
 
 
115
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
 
116
 * descale to yield a DCTELEM result.
 
117
 */
 
118
 
 
119
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
 
120
 
 
121
 
 
122
/* Dequantize a coefficient by multiplying it by the multiplier-table
 
123
 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
 
124
 * multiplication will do.  For 12-bit data, the multiplier table is
 
125
 * declared INT32, so a 32-bit multiply will be used.
 
126
 */
 
127
 
 
128
#if BITS_IN_JSAMPLE == 8
 
129
#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
 
130
#else
 
131
#define DEQUANTIZE(coef,quantval)  \
 
132
        DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
 
133
#endif
 
134
 
 
135
 
 
136
/* Like DESCALE, but applies to a DCTELEM and produces an int.
 
137
 * We assume that int right shift is unsigned if INT32 right shift is.
 
138
 */
 
139
 
 
140
#ifdef RIGHT_SHIFT_IS_UNSIGNED
 
141
#define ISHIFT_TEMPS    DCTELEM ishift_temp;
 
142
#if BITS_IN_JSAMPLE == 8
 
143
#define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
 
144
#else
 
145
#define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
 
146
#endif
 
147
#define IRIGHT_SHIFT(x,shft)  \
 
148
    ((ishift_temp = (x)) < 0 ? \
 
149
     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
 
150
     (ishift_temp >> (shft)))
 
151
#else
 
152
#define ISHIFT_TEMPS
 
153
#define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
 
154
#endif
 
155
 
 
156
#ifdef USE_ACCURATE_ROUNDING
 
157
#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
 
158
#else
 
159
#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
 
160
#endif
 
161
 
 
162
 
 
163
/*
 
164
 * Perform dequantization and inverse DCT on one block of coefficients.
 
165
 */
 
166
 
 
167
GLOBAL(void)
 
168
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 
169
                 JCOEFPTR coef_block,
 
170
                 JSAMPARRAY output_buf, JDIMENSION output_col)
 
171
{
 
172
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 
173
  DCTELEM tmp10, tmp11, tmp12, tmp13;
 
174
  DCTELEM z5, z10, z11, z12, z13;
 
175
  JCOEFPTR inptr;
 
176
  IFAST_MULT_TYPE * quantptr;
 
177
  int * wsptr;
 
178
  JSAMPROW outptr;
 
179
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
 
180
  int ctr;
 
181
  int workspace[DCTSIZE2];      /* buffers data between passes */
 
182
  SHIFT_TEMPS                   /* for DESCALE */
 
183
  ISHIFT_TEMPS                  /* for IDESCALE */
 
184
 
 
185
  /* Pass 1: process columns from input, store into work array. */
 
186
 
 
187
  inptr = coef_block;
 
188
  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
 
189
  wsptr = workspace;
 
190
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
 
191
    /* Due to quantization, we will usually find that many of the input
 
192
     * coefficients are zero, especially the AC terms.  We can exploit this
 
193
     * by short-circuiting the IDCT calculation for any column in which all
 
194
     * the AC terms are zero.  In that case each output is equal to the
 
195
     * DC coefficient (with scale factor as needed).
 
196
     * With typical images and quantization tables, half or more of the
 
197
     * column DCT calculations can be simplified this way.
 
198
     */
 
199
    
 
200
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
 
201
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 
202
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 
203
        inptr[DCTSIZE*7] == 0) {
 
204
      /* AC terms all zero */
 
205
      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 
206
 
 
207
      wsptr[DCTSIZE*0] = dcval;
 
208
      wsptr[DCTSIZE*1] = dcval;
 
209
      wsptr[DCTSIZE*2] = dcval;
 
210
      wsptr[DCTSIZE*3] = dcval;
 
211
      wsptr[DCTSIZE*4] = dcval;
 
212
      wsptr[DCTSIZE*5] = dcval;
 
213
      wsptr[DCTSIZE*6] = dcval;
 
214
      wsptr[DCTSIZE*7] = dcval;
 
215
      
 
216
      inptr++;                  /* advance pointers to next column */
 
217
      quantptr++;
 
218
      wsptr++;
 
219
      continue;
 
220
    }
 
221
    
 
222
    /* Even part */
 
223
 
 
224
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 
225
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
 
226
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
 
227
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
 
228
 
 
229
    tmp10 = tmp0 + tmp2;        /* phase 3 */
 
230
    tmp11 = tmp0 - tmp2;
 
231
 
 
232
    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
 
233
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
 
234
 
 
235
    tmp0 = tmp10 + tmp13;       /* phase 2 */
 
236
    tmp3 = tmp10 - tmp13;
 
237
    tmp1 = tmp11 + tmp12;
 
238
    tmp2 = tmp11 - tmp12;
 
239
    
 
240
    /* Odd part */
 
241
 
 
242
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
 
243
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
 
244
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
 
245
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
 
246
 
 
247
    z13 = tmp6 + tmp5;          /* phase 6 */
 
248
    z10 = tmp6 - tmp5;
 
249
    z11 = tmp4 + tmp7;
 
250
    z12 = tmp4 - tmp7;
 
251
 
 
252
    tmp7 = z11 + z13;           /* phase 5 */
 
253
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 
254
 
 
255
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 
256
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 
257
    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 
258
 
 
259
    tmp6 = tmp12 - tmp7;        /* phase 2 */
 
260
    tmp5 = tmp11 - tmp6;
 
261
    tmp4 = tmp10 + tmp5;
 
262
 
 
263
    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
 
264
    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
 
265
    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
 
266
    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
 
267
    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
 
268
    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
 
269
    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
 
270
    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
 
271
 
 
272
    inptr++;                    /* advance pointers to next column */
 
273
    quantptr++;
 
274
    wsptr++;
 
275
  }
 
276
  
 
277
  /* Pass 2: process rows from work array, store into output array. */
 
278
  /* Note that we must descale the results by a factor of 8 == 2**3, */
 
279
  /* and also undo the PASS1_BITS scaling. */
 
280
 
 
281
  wsptr = workspace;
 
282
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
 
283
    outptr = output_buf[ctr] + output_col;
 
284
    /* Rows of zeroes can be exploited in the same way as we did with columns.
 
285
     * However, the column calculation has created many nonzero AC terms, so
 
286
     * the simplification applies less often (typically 5% to 10% of the time).
 
287
     * On machines with very fast multiplication, it's possible that the
 
288
     * test takes more time than it's worth.  In that case this section
 
289
     * may be commented out.
 
290
     */
 
291
    
 
292
#ifndef NO_ZERO_ROW_TEST
 
293
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
 
294
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
 
295
      /* AC terms all zero */
 
296
      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
 
297
                                  & RANGE_MASK];
 
298
      
 
299
      outptr[0] = dcval;
 
300
      outptr[1] = dcval;
 
301
      outptr[2] = dcval;
 
302
      outptr[3] = dcval;
 
303
      outptr[4] = dcval;
 
304
      outptr[5] = dcval;
 
305
      outptr[6] = dcval;
 
306
      outptr[7] = dcval;
 
307
 
 
308
      wsptr += DCTSIZE;         /* advance pointer to next row */
 
309
      continue;
 
310
    }
 
311
#endif
 
312
    
 
313
    /* Even part */
 
314
 
 
315
    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
 
316
    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
 
317
 
 
318
    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
 
319
    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
 
320
            - tmp13;
 
321
 
 
322
    tmp0 = tmp10 + tmp13;
 
323
    tmp3 = tmp10 - tmp13;
 
324
    tmp1 = tmp11 + tmp12;
 
325
    tmp2 = tmp11 - tmp12;
 
326
 
 
327
    /* Odd part */
 
328
 
 
329
    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
 
330
    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
 
331
    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
 
332
    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
 
333
 
 
334
    tmp7 = z11 + z13;           /* phase 5 */
 
335
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 
336
 
 
337
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 
338
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 
339
    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 
340
 
 
341
    tmp6 = tmp12 - tmp7;        /* phase 2 */
 
342
    tmp5 = tmp11 - tmp6;
 
343
    tmp4 = tmp10 + tmp5;
 
344
 
 
345
    /* Final output stage: scale down by a factor of 8 and range-limit */
 
346
 
 
347
    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
 
348
                            & RANGE_MASK];
 
349
    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
 
350
                            & RANGE_MASK];
 
351
    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
 
352
                            & RANGE_MASK];
 
353
    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
 
354
                            & RANGE_MASK];
 
355
    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
 
356
                            & RANGE_MASK];
 
357
    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
 
358
                            & RANGE_MASK];
 
359
    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
 
360
                            & RANGE_MASK];
 
361
    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
 
362
                            & RANGE_MASK];
 
363
 
 
364
    wsptr += DCTSIZE;           /* advance pointer to next row */
 
365
  }
 
366
}
 
367
 
 
368
#endif /* DCT_IFAST_SUPPORTED */