~ubuntu-dev/mplayer/ubuntu-feisty

« back to all changes in this revision

Viewing changes to postproc/swscale.c

  • Committer: William Grant
  • Date: 2007-02-03 03:16:07 UTC
  • mto: This revision was merged to the branch mainline in revision 16.
  • Revision ID: william.grant@ubuntu.org.au-20070203031607-08gc2ompbz6spt9i
Update to 1.0rc1.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/*
2
 
    Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 
 
4
 
    This program is free software; you can redistribute it and/or modify
5
 
    it under the terms of the GNU General Public License as published by
6
 
    the Free Software Foundation; either version 2 of the License, or
7
 
    (at your option) any later version.
8
 
 
9
 
    This program is distributed in the hope that it will be useful,
10
 
    but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 
    GNU General Public License for more details.
13
 
 
14
 
    You should have received a copy of the GNU General Public License
15
 
    along with this program; if not, write to the Free Software
16
 
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17
 
*/
18
 
 
19
 
/*
20
 
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21
 
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22
 
  {BGR,RGB}{1,4,8,15,16} support dithering
23
 
  
24
 
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25
 
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26
 
  x -> x
27
 
  YUV9 -> YV12
28
 
  YUV9/YV12 -> Y800
29
 
  Y800 -> YUV9/YV12
30
 
  BGR24 -> BGR32 & RGB24 -> RGB32
31
 
  BGR32 -> BGR24 & RGB32 -> RGB24
32
 
  BGR15 -> BGR16
33
 
*/
34
 
 
35
 
/* 
36
 
tested special converters (most are tested actually but i didnt write it down ...)
37
 
 YV12 -> BGR16
38
 
 YV12 -> YV12
39
 
 BGR15 -> BGR16
40
 
 BGR16 -> BGR16
41
 
 YVU9 -> YV12
42
 
 
43
 
untested special converters
44
 
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45
 
  YV12/I420 -> YV12/I420
46
 
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47
 
  BGR24 -> BGR32 & RGB24 -> RGB32
48
 
  BGR32 -> BGR24 & RGB32 -> RGB24
49
 
  BGR24 -> YV12
50
 
*/
51
 
 
52
 
#include <inttypes.h>
53
 
#include <string.h>
54
 
#include <math.h>
55
 
#include <stdio.h>
56
 
#include <unistd.h>
57
 
#include "config.h"
58
 
#include "mangle.h"
59
 
#include <assert.h>
60
 
#ifdef HAVE_MALLOC_H
61
 
#include <malloc.h>
62
 
#else
63
 
#include <stdlib.h>
64
 
#endif
65
 
#ifdef HAVE_SYS_MMAN_H
66
 
#include <sys/mman.h>
67
 
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68
 
#define MAP_ANONYMOUS MAP_ANON
69
 
#endif
70
 
#endif
71
 
#include "swscale.h"
72
 
#include "swscale_internal.h"
73
 
#include "cpudetect.h"
74
 
#include "bswap.h"
75
 
#include "libvo/img_format.h"
76
 
#include "rgb2rgb.h"
77
 
#include "libvo/fastmemcpy.h"
78
 
 
79
 
#undef MOVNTQ
80
 
#undef PAVGB
81
 
 
82
 
//#undef HAVE_MMX2
83
 
//#define HAVE_3DNOW
84
 
//#undef HAVE_MMX
85
 
//#undef ARCH_X86
86
 
//#define WORDS_BIGENDIAN
87
 
#define DITHER1XBPP
88
 
 
89
 
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90
 
 
91
 
#define RET 0xC3 //near return opcode for X86
92
 
 
93
 
#ifdef MP_DEBUG
94
 
#define ASSERT(x) assert(x);
95
 
#else
96
 
#define ASSERT(x) ;
97
 
#endif
98
 
 
99
 
#ifdef M_PI
100
 
#define PI M_PI
101
 
#else
102
 
#define PI 3.14159265358979323846
103
 
#endif
104
 
 
105
 
//FIXME replace this with something faster
106
 
#define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
107
 
                        || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
108
 
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
109
 
#define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
110
 
#define isGray(x)      ((x)==IMGFMT_Y800)
111
 
#define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
112
 
#define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
113
 
#define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114
 
                        || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
115
 
                        || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
116
 
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
117
 
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
118
 
#define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
119
 
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
120
 
                        || isRGB(x) || isBGR(x)\
121
 
                        || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
122
 
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
123
 
#define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
124
 
 
125
 
#define RGB2YUV_SHIFT 16
126
 
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
127
 
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
128
 
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
129
 
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
130
 
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
131
 
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
132
 
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
133
 
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
134
 
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
135
 
 
136
 
extern const int32_t Inverse_Table_6_9[8][4];
137
 
 
138
 
/*
139
 
NOTES
140
 
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
141
 
 
142
 
TODO
143
 
more intelligent missalignment avoidance for the horizontal scaler
144
 
write special vertical cubic upscale version
145
 
Optimize C code (yv12 / minmax)
146
 
add support for packed pixel yuv input & output
147
 
add support for Y8 output
148
 
optimize bgr24 & bgr32
149
 
add BGR4 output support
150
 
write special BGR->BGR scaler
151
 
*/
152
 
 
153
 
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
154
 
#define MIN(a,b) ((a) > (b) ? (b) : (a))
155
 
#define MAX(a,b) ((a) < (b) ? (b) : (a))
156
 
 
157
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
158
 
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
159
 
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
160
 
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
161
 
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
162
 
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
163
 
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
164
 
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
165
 
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
166
 
 
167
 
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
168
 
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
169
 
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
170
 
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
171
 
 
172
 
static uint64_t __attribute__((aligned(8))) dither4[2]={
173
 
        0x0103010301030103LL,
174
 
        0x0200020002000200LL,};
175
 
 
176
 
static uint64_t __attribute__((aligned(8))) dither8[2]={
177
 
        0x0602060206020602LL,
178
 
        0x0004000400040004LL,};
179
 
 
180
 
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
181
 
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
182
 
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
183
 
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
184
 
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
185
 
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
186
 
 
187
 
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
188
 
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
189
 
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
190
 
 
191
 
#ifdef FAST_BGR2YV12
192
 
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
193
 
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
194
 
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
195
 
#else
196
 
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
197
 
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
198
 
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
199
 
#endif
200
 
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
201
 
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
202
 
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
203
 
#endif
204
 
 
205
 
// clipping helper table for C implementations:
206
 
static unsigned char clip_table[768];
207
 
 
208
 
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
209
 
                  
210
 
extern const uint8_t dither_2x2_4[2][8];
211
 
extern const uint8_t dither_2x2_8[2][8];
212
 
extern const uint8_t dither_8x8_32[8][8];
213
 
extern const uint8_t dither_8x8_73[8][8];
214
 
extern const uint8_t dither_8x8_220[8][8];
215
 
 
216
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
217
 
void in_asm_used_var_warning_killer()
218
 
{
219
 
 volatile int i= bF8+bFC+w10+
220
 
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
221
 
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
222
 
 if(i) i=0;
223
 
}
224
 
#endif
225
 
 
226
 
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
227
 
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
228
 
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
229
 
{
230
 
        //FIXME Optimize (just quickly writen not opti..)
231
 
        int i;
232
 
        for(i=0; i<dstW; i++)
233
 
        {
234
 
                int val=1<<18;
235
 
                int j;
236
 
                for(j=0; j<lumFilterSize; j++)
237
 
                        val += lumSrc[j][i] * lumFilter[j];
238
 
 
239
 
                dest[i]= MIN(MAX(val>>19, 0), 255);
240
 
        }
241
 
 
242
 
        if(uDest != NULL)
243
 
                for(i=0; i<chrDstW; i++)
244
 
                {
245
 
                        int u=1<<18;
246
 
                        int v=1<<18;
247
 
                        int j;
248
 
                        for(j=0; j<chrFilterSize; j++)
249
 
                        {
250
 
                                u += chrSrc[j][i] * chrFilter[j];
251
 
                                v += chrSrc[j][i + 2048] * chrFilter[j];
252
 
                        }
253
 
 
254
 
                        uDest[i]= MIN(MAX(u>>19, 0), 255);
255
 
                        vDest[i]= MIN(MAX(v>>19, 0), 255);
256
 
                }
257
 
}
258
 
 
259
 
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
260
 
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
261
 
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
262
 
{
263
 
        //FIXME Optimize (just quickly writen not opti..)
264
 
        int i;
265
 
        for(i=0; i<dstW; i++)
266
 
        {
267
 
                int val=1<<18;
268
 
                int j;
269
 
                for(j=0; j<lumFilterSize; j++)
270
 
                        val += lumSrc[j][i] * lumFilter[j];
271
 
 
272
 
                dest[i]= MIN(MAX(val>>19, 0), 255);
273
 
        }
274
 
 
275
 
        if(uDest == NULL)
276
 
                return;
277
 
 
278
 
        if(dstFormat == IMGFMT_NV12)
279
 
                for(i=0; i<chrDstW; i++)
280
 
                {
281
 
                        int u=1<<18;
282
 
                        int v=1<<18;
283
 
                        int j;
284
 
                        for(j=0; j<chrFilterSize; j++)
285
 
                        {
286
 
                                u += chrSrc[j][i] * chrFilter[j];
287
 
                                v += chrSrc[j][i + 2048] * chrFilter[j];
288
 
                        }
289
 
 
290
 
                        uDest[2*i]= MIN(MAX(u>>19, 0), 255);
291
 
                        uDest[2*i+1]= MIN(MAX(v>>19, 0), 255);
292
 
                }
293
 
        else
294
 
                for(i=0; i<chrDstW; i++)
295
 
                {
296
 
                        int u=1<<18;
297
 
                        int v=1<<18;
298
 
                        int j;
299
 
                        for(j=0; j<chrFilterSize; j++)
300
 
                        {
301
 
                                u += chrSrc[j][i] * chrFilter[j];
302
 
                                v += chrSrc[j][i + 2048] * chrFilter[j];
303
 
                        }
304
 
 
305
 
                        uDest[2*i]= MIN(MAX(v>>19, 0), 255);
306
 
                        uDest[2*i+1]= MIN(MAX(u>>19, 0), 255);
307
 
                }
308
 
}
309
 
 
310
 
#define YSCALE_YUV_2_PACKEDX_C(type) \
311
 
                for(i=0; i<(dstW>>1); i++){\
312
 
                        int j;\
313
 
                        int Y1=1<<18;\
314
 
                        int Y2=1<<18;\
315
 
                        int U=1<<18;\
316
 
                        int V=1<<18;\
317
 
                        type *r, *b, *g;\
318
 
                        const int i2= 2*i;\
319
 
                        \
320
 
                        for(j=0; j<lumFilterSize; j++)\
321
 
                        {\
322
 
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
323
 
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
324
 
                        }\
325
 
                        for(j=0; j<chrFilterSize; j++)\
326
 
                        {\
327
 
                                U += chrSrc[j][i] * chrFilter[j];\
328
 
                                V += chrSrc[j][i+2048] * chrFilter[j];\
329
 
                        }\
330
 
                        Y1>>=19;\
331
 
                        Y2>>=19;\
332
 
                        U >>=19;\
333
 
                        V >>=19;\
334
 
                        if((Y1|Y2|U|V)&256)\
335
 
                        {\
336
 
                                if(Y1>255)   Y1=255;\
337
 
                                else if(Y1<0)Y1=0;\
338
 
                                if(Y2>255)   Y2=255;\
339
 
                                else if(Y2<0)Y2=0;\
340
 
                                if(U>255)    U=255;\
341
 
                                else if(U<0) U=0;\
342
 
                                if(V>255)    V=255;\
343
 
                                else if(V<0) V=0;\
344
 
                        }
345
 
                        
346
 
#define YSCALE_YUV_2_RGBX_C(type) \
347
 
                        YSCALE_YUV_2_PACKEDX_C(type)\
348
 
                        r = c->table_rV[V];\
349
 
                        g = c->table_gU[U] + c->table_gV[V];\
350
 
                        b = c->table_bU[U];\
351
 
 
352
 
#define YSCALE_YUV_2_PACKED2_C \
353
 
                for(i=0; i<(dstW>>1); i++){\
354
 
                        const int i2= 2*i;\
355
 
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
356
 
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
357
 
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
358
 
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
359
 
 
360
 
#define YSCALE_YUV_2_RGB2_C(type) \
361
 
                        YSCALE_YUV_2_PACKED2_C\
362
 
                        type *r, *b, *g;\
363
 
                        r = c->table_rV[V];\
364
 
                        g = c->table_gU[U] + c->table_gV[V];\
365
 
                        b = c->table_bU[U];\
366
 
 
367
 
#define YSCALE_YUV_2_PACKED1_C \
368
 
                for(i=0; i<(dstW>>1); i++){\
369
 
                        const int i2= 2*i;\
370
 
                        int Y1= buf0[i2  ]>>7;\
371
 
                        int Y2= buf0[i2+1]>>7;\
372
 
                        int U= (uvbuf1[i     ])>>7;\
373
 
                        int V= (uvbuf1[i+2048])>>7;\
374
 
 
375
 
#define YSCALE_YUV_2_RGB1_C(type) \
376
 
                        YSCALE_YUV_2_PACKED1_C\
377
 
                        type *r, *b, *g;\
378
 
                        r = c->table_rV[V];\
379
 
                        g = c->table_gU[U] + c->table_gV[V];\
380
 
                        b = c->table_bU[U];\
381
 
 
382
 
#define YSCALE_YUV_2_PACKED1B_C \
383
 
                for(i=0; i<(dstW>>1); i++){\
384
 
                        const int i2= 2*i;\
385
 
                        int Y1= buf0[i2  ]>>7;\
386
 
                        int Y2= buf0[i2+1]>>7;\
387
 
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
388
 
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
389
 
 
390
 
#define YSCALE_YUV_2_RGB1B_C(type) \
391
 
                        YSCALE_YUV_2_PACKED1B_C\
392
 
                        type *r, *b, *g;\
393
 
                        r = c->table_rV[V];\
394
 
                        g = c->table_gU[U] + c->table_gV[V];\
395
 
                        b = c->table_bU[U];\
396
 
 
397
 
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
398
 
        switch(c->dstFormat)\
399
 
        {\
400
 
        case IMGFMT_BGR32:\
401
 
        case IMGFMT_RGB32:\
402
 
                func(uint32_t)\
403
 
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
404
 
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
405
 
                }               \
406
 
                break;\
407
 
        case IMGFMT_RGB24:\
408
 
                func(uint8_t)\
409
 
                        ((uint8_t*)dest)[0]= r[Y1];\
410
 
                        ((uint8_t*)dest)[1]= g[Y1];\
411
 
                        ((uint8_t*)dest)[2]= b[Y1];\
412
 
                        ((uint8_t*)dest)[3]= r[Y2];\
413
 
                        ((uint8_t*)dest)[4]= g[Y2];\
414
 
                        ((uint8_t*)dest)[5]= b[Y2];\
415
 
                        dest+=6;\
416
 
                }\
417
 
                break;\
418
 
        case IMGFMT_BGR24:\
419
 
                func(uint8_t)\
420
 
                        ((uint8_t*)dest)[0]= b[Y1];\
421
 
                        ((uint8_t*)dest)[1]= g[Y1];\
422
 
                        ((uint8_t*)dest)[2]= r[Y1];\
423
 
                        ((uint8_t*)dest)[3]= b[Y2];\
424
 
                        ((uint8_t*)dest)[4]= g[Y2];\
425
 
                        ((uint8_t*)dest)[5]= r[Y2];\
426
 
                        dest+=6;\
427
 
                }\
428
 
                break;\
429
 
        case IMGFMT_RGB16:\
430
 
        case IMGFMT_BGR16:\
431
 
                {\
432
 
                        const int dr1= dither_2x2_8[y&1    ][0];\
433
 
                        const int dg1= dither_2x2_4[y&1    ][0];\
434
 
                        const int db1= dither_2x2_8[(y&1)^1][0];\
435
 
                        const int dr2= dither_2x2_8[y&1    ][1];\
436
 
                        const int dg2= dither_2x2_4[y&1    ][1];\
437
 
                        const int db2= dither_2x2_8[(y&1)^1][1];\
438
 
                        func(uint16_t)\
439
 
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
440
 
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
441
 
                        }\
442
 
                }\
443
 
                break;\
444
 
        case IMGFMT_RGB15:\
445
 
        case IMGFMT_BGR15:\
446
 
                {\
447
 
                        const int dr1= dither_2x2_8[y&1    ][0];\
448
 
                        const int dg1= dither_2x2_8[y&1    ][1];\
449
 
                        const int db1= dither_2x2_8[(y&1)^1][0];\
450
 
                        const int dr2= dither_2x2_8[y&1    ][1];\
451
 
                        const int dg2= dither_2x2_8[y&1    ][0];\
452
 
                        const int db2= dither_2x2_8[(y&1)^1][1];\
453
 
                        func(uint16_t)\
454
 
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
455
 
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
456
 
                        }\
457
 
                }\
458
 
                break;\
459
 
        case IMGFMT_RGB8:\
460
 
        case IMGFMT_BGR8:\
461
 
                {\
462
 
                        const uint8_t * const d64= dither_8x8_73[y&7];\
463
 
                        const uint8_t * const d32= dither_8x8_32[y&7];\
464
 
                        func(uint8_t)\
465
 
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
466
 
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
467
 
                        }\
468
 
                }\
469
 
                break;\
470
 
        case IMGFMT_RGB4:\
471
 
        case IMGFMT_BGR4:\
472
 
                {\
473
 
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
474
 
                        const uint8_t * const d128=dither_8x8_220[y&7];\
475
 
                        func(uint8_t)\
476
 
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
477
 
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
478
 
                        }\
479
 
                }\
480
 
                break;\
481
 
        case IMGFMT_RG4B:\
482
 
        case IMGFMT_BG4B:\
483
 
                {\
484
 
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
485
 
                        const uint8_t * const d128=dither_8x8_220[y&7];\
486
 
                        func(uint8_t)\
487
 
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
488
 
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
489
 
                        }\
490
 
                }\
491
 
                break;\
492
 
        case IMGFMT_RGB1:\
493
 
        case IMGFMT_BGR1:\
494
 
                {\
495
 
                        const uint8_t * const d128=dither_8x8_220[y&7];\
496
 
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
497
 
                        for(i=0; i<dstW-7; i+=8){\
498
 
                                int acc;\
499
 
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
500
 
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
501
 
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
502
 
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
503
 
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
504
 
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
505
 
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
506
 
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
507
 
                                ((uint8_t*)dest)[0]= acc;\
508
 
                                dest++;\
509
 
                        }\
510
 
\
511
 
/*\
512
 
((uint8_t*)dest)-= dstW>>4;\
513
 
{\
514
 
                        int acc=0;\
515
 
                        int left=0;\
516
 
                        static int top[1024];\
517
 
                        static int last_new[1024][1024];\
518
 
                        static int last_in3[1024][1024];\
519
 
                        static int drift[1024][1024];\
520
 
                        int topLeft=0;\
521
 
                        int shift=0;\
522
 
                        int count=0;\
523
 
                        const uint8_t * const d128=dither_8x8_220[y&7];\
524
 
                        int error_new=0;\
525
 
                        int error_in3=0;\
526
 
                        int f=0;\
527
 
                        \
528
 
                        for(i=dstW>>1; i<dstW; i++){\
529
 
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
530
 
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
531
 
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
532
 
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
533
 
                                        + (last_new[y][i] - in3)*f/256;\
534
 
                                int new= old> 128 ? 255 : 0;\
535
 
\
536
 
                                error_new+= ABS(last_new[y][i] - new);\
537
 
                                error_in3+= ABS(last_in3[y][i] - in3);\
538
 
                                f= error_new - error_in3*4;\
539
 
                                if(f<0) f=0;\
540
 
                                if(f>256) f=256;\
541
 
\
542
 
                                topLeft= top[i];\
543
 
                                left= top[i]= old - new;\
544
 
                                last_new[y][i]= new;\
545
 
                                last_in3[y][i]= in3;\
546
 
\
547
 
                                acc+= acc + (new&1);\
548
 
                                if((i&7)==6){\
549
 
                                        ((uint8_t*)dest)[0]= acc;\
550
 
                                        ((uint8_t*)dest)++;\
551
 
                                }\
552
 
                        }\
553
 
}\
554
 
*/\
555
 
                }\
556
 
                break;\
557
 
        case IMGFMT_YUY2:\
558
 
                func2\
559
 
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
560
 
                        ((uint8_t*)dest)[2*i2+1]= U;\
561
 
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
562
 
                        ((uint8_t*)dest)[2*i2+3]= V;\
563
 
                }               \
564
 
                break;\
565
 
        case IMGFMT_UYVY:\
566
 
                func2\
567
 
                        ((uint8_t*)dest)[2*i2+0]= U;\
568
 
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
569
 
                        ((uint8_t*)dest)[2*i2+2]= V;\
570
 
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
571
 
                }               \
572
 
                break;\
573
 
        }\
574
 
 
575
 
 
576
 
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
577
 
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
578
 
                                    uint8_t *dest, int dstW, int y)
579
 
{
580
 
        int i;
581
 
        switch(c->dstFormat)
582
 
        {
583
 
        case IMGFMT_RGB32:
584
 
        case IMGFMT_BGR32:
585
 
                YSCALE_YUV_2_RGBX_C(uint32_t)
586
 
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
587
 
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
588
 
                }
589
 
                break;
590
 
        case IMGFMT_RGB24:
591
 
                YSCALE_YUV_2_RGBX_C(uint8_t)
592
 
                        ((uint8_t*)dest)[0]= r[Y1];
593
 
                        ((uint8_t*)dest)[1]= g[Y1];
594
 
                        ((uint8_t*)dest)[2]= b[Y1];
595
 
                        ((uint8_t*)dest)[3]= r[Y2];
596
 
                        ((uint8_t*)dest)[4]= g[Y2];
597
 
                        ((uint8_t*)dest)[5]= b[Y2];
598
 
                        dest+=6;
599
 
                }
600
 
                break;
601
 
        case IMGFMT_BGR24:
602
 
                YSCALE_YUV_2_RGBX_C(uint8_t)
603
 
                        ((uint8_t*)dest)[0]= b[Y1];
604
 
                        ((uint8_t*)dest)[1]= g[Y1];
605
 
                        ((uint8_t*)dest)[2]= r[Y1];
606
 
                        ((uint8_t*)dest)[3]= b[Y2];
607
 
                        ((uint8_t*)dest)[4]= g[Y2];
608
 
                        ((uint8_t*)dest)[5]= r[Y2];
609
 
                        dest+=6;
610
 
                }
611
 
                break;
612
 
        case IMGFMT_RGB16:
613
 
        case IMGFMT_BGR16:
614
 
                {
615
 
                        const int dr1= dither_2x2_8[y&1    ][0];
616
 
                        const int dg1= dither_2x2_4[y&1    ][0];
617
 
                        const int db1= dither_2x2_8[(y&1)^1][0];
618
 
                        const int dr2= dither_2x2_8[y&1    ][1];
619
 
                        const int dg2= dither_2x2_4[y&1    ][1];
620
 
                        const int db2= dither_2x2_8[(y&1)^1][1];
621
 
                        YSCALE_YUV_2_RGBX_C(uint16_t)
622
 
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
623
 
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
624
 
                        }
625
 
                }
626
 
                break;
627
 
        case IMGFMT_RGB15:
628
 
        case IMGFMT_BGR15:
629
 
                {
630
 
                        const int dr1= dither_2x2_8[y&1    ][0];
631
 
                        const int dg1= dither_2x2_8[y&1    ][1];
632
 
                        const int db1= dither_2x2_8[(y&1)^1][0];
633
 
                        const int dr2= dither_2x2_8[y&1    ][1];
634
 
                        const int dg2= dither_2x2_8[y&1    ][0];
635
 
                        const int db2= dither_2x2_8[(y&1)^1][1];
636
 
                        YSCALE_YUV_2_RGBX_C(uint16_t)
637
 
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
638
 
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
639
 
                        }
640
 
                }
641
 
                break;
642
 
        case IMGFMT_RGB8:
643
 
        case IMGFMT_BGR8:
644
 
                {
645
 
                        const uint8_t * const d64= dither_8x8_73[y&7];
646
 
                        const uint8_t * const d32= dither_8x8_32[y&7];
647
 
                        YSCALE_YUV_2_RGBX_C(uint8_t)
648
 
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
649
 
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
650
 
                        }
651
 
                }
652
 
                break;
653
 
        case IMGFMT_RGB4:
654
 
        case IMGFMT_BGR4:
655
 
                {
656
 
                        const uint8_t * const d64= dither_8x8_73 [y&7];
657
 
                        const uint8_t * const d128=dither_8x8_220[y&7];
658
 
                        YSCALE_YUV_2_RGBX_C(uint8_t)
659
 
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
660
 
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
661
 
                        }
662
 
                }
663
 
                break;
664
 
        case IMGFMT_RG4B:
665
 
        case IMGFMT_BG4B:
666
 
                {
667
 
                        const uint8_t * const d64= dither_8x8_73 [y&7];
668
 
                        const uint8_t * const d128=dither_8x8_220[y&7];
669
 
                        YSCALE_YUV_2_RGBX_C(uint8_t)
670
 
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
671
 
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
672
 
                        }
673
 
                }
674
 
                break;
675
 
        case IMGFMT_RGB1:
676
 
        case IMGFMT_BGR1:
677
 
                {
678
 
                        const uint8_t * const d128=dither_8x8_220[y&7];
679
 
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
680
 
                        int acc=0;
681
 
                        for(i=0; i<dstW-1; i+=2){
682
 
                                int j;
683
 
                                int Y1=1<<18;
684
 
                                int Y2=1<<18;
685
 
 
686
 
                                for(j=0; j<lumFilterSize; j++)
687
 
                                {
688
 
                                        Y1 += lumSrc[j][i] * lumFilter[j];
689
 
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
690
 
                                }
691
 
                                Y1>>=19;
692
 
                                Y2>>=19;
693
 
                                if((Y1|Y2)&256)
694
 
                                {
695
 
                                        if(Y1>255)   Y1=255;
696
 
                                        else if(Y1<0)Y1=0;
697
 
                                        if(Y2>255)   Y2=255;
698
 
                                        else if(Y2<0)Y2=0;
699
 
                                }
700
 
                                acc+= acc + g[Y1+d128[(i+0)&7]];
701
 
                                acc+= acc + g[Y2+d128[(i+1)&7]];
702
 
                                if((i&7)==6){
703
 
                                        ((uint8_t*)dest)[0]= acc;
704
 
                                        dest++;
705
 
                                }
706
 
                        }
707
 
                }
708
 
                break;
709
 
        case IMGFMT_YUY2:
710
 
                YSCALE_YUV_2_PACKEDX_C(void)
711
 
                        ((uint8_t*)dest)[2*i2+0]= Y1;
712
 
                        ((uint8_t*)dest)[2*i2+1]= U;
713
 
                        ((uint8_t*)dest)[2*i2+2]= Y2;
714
 
                        ((uint8_t*)dest)[2*i2+3]= V;
715
 
                }
716
 
                break;
717
 
        case IMGFMT_UYVY:
718
 
                YSCALE_YUV_2_PACKEDX_C(void)
719
 
                        ((uint8_t*)dest)[2*i2+0]= U;
720
 
                        ((uint8_t*)dest)[2*i2+1]= Y1;
721
 
                        ((uint8_t*)dest)[2*i2+2]= V;
722
 
                        ((uint8_t*)dest)[2*i2+3]= Y2;
723
 
                }
724
 
                break;
725
 
        }
726
 
}
727
 
 
728
 
 
729
 
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
730
 
//Plain C versions
731
 
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
732
 
#define COMPILE_C
733
 
#endif
734
 
 
735
 
#ifdef ARCH_POWERPC
736
 
#if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
737
 
#define COMPILE_ALTIVEC
738
 
#endif //HAVE_ALTIVEC
739
 
#endif //ARCH_POWERPC
740
 
 
741
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
742
 
 
743
 
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
744
 
#define COMPILE_MMX
745
 
#endif
746
 
 
747
 
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
748
 
#define COMPILE_MMX2
749
 
#endif
750
 
 
751
 
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
752
 
#define COMPILE_3DNOW
753
 
#endif
754
 
#endif //ARCH_X86 || ARCH_X86_64
755
 
 
756
 
#undef HAVE_MMX
757
 
#undef HAVE_MMX2
758
 
#undef HAVE_3DNOW
759
 
 
760
 
#ifdef COMPILE_C
761
 
#undef HAVE_MMX
762
 
#undef HAVE_MMX2
763
 
#undef HAVE_3DNOW
764
 
#undef HAVE_ALTIVEC
765
 
#define RENAME(a) a ## _C
766
 
#include "swscale_template.c"
767
 
#endif
768
 
 
769
 
#ifdef ARCH_POWERPC
770
 
#ifdef COMPILE_ALTIVEC
771
 
#undef RENAME
772
 
#define HAVE_ALTIVEC
773
 
#define RENAME(a) a ## _altivec
774
 
#include "swscale_template.c"
775
 
#endif
776
 
#endif //ARCH_POWERPC
777
 
 
778
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
779
 
 
780
 
//X86 versions
781
 
/*
782
 
#undef RENAME
783
 
#undef HAVE_MMX
784
 
#undef HAVE_MMX2
785
 
#undef HAVE_3DNOW
786
 
#define ARCH_X86
787
 
#define RENAME(a) a ## _X86
788
 
#include "swscale_template.c"
789
 
*/
790
 
//MMX versions
791
 
#ifdef COMPILE_MMX
792
 
#undef RENAME
793
 
#define HAVE_MMX
794
 
#undef HAVE_MMX2
795
 
#undef HAVE_3DNOW
796
 
#define RENAME(a) a ## _MMX
797
 
#include "swscale_template.c"
798
 
#endif
799
 
 
800
 
//MMX2 versions
801
 
#ifdef COMPILE_MMX2
802
 
#undef RENAME
803
 
#define HAVE_MMX
804
 
#define HAVE_MMX2
805
 
#undef HAVE_3DNOW
806
 
#define RENAME(a) a ## _MMX2
807
 
#include "swscale_template.c"
808
 
#endif
809
 
 
810
 
//3DNOW versions
811
 
#ifdef COMPILE_3DNOW
812
 
#undef RENAME
813
 
#define HAVE_MMX
814
 
#undef HAVE_MMX2
815
 
#define HAVE_3DNOW
816
 
#define RENAME(a) a ## _3DNow
817
 
#include "swscale_template.c"
818
 
#endif
819
 
 
820
 
#endif //ARCH_X86 || ARCH_X86_64
821
 
 
822
 
// minor note: the HAVE_xyz is messed up after that line so don't use it
823
 
 
824
 
static double getSplineCoeff(double a, double b, double c, double d, double dist)
825
 
{
826
 
//      printf("%f %f %f %f %f\n", a,b,c,d,dist);
827
 
        if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
828
 
        else            return getSplineCoeff(  0.0, 
829
 
                                                 b+ 2.0*c + 3.0*d,
830
 
                                                        c + 3.0*d,
831
 
                                                -b- 3.0*c - 6.0*d,
832
 
                                                dist-1.0);
833
 
}
834
 
 
835
 
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
836
 
                              int srcW, int dstW, int filterAlign, int one, int flags,
837
 
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
838
 
{
839
 
        int i;
840
 
        int filterSize;
841
 
        int filter2Size;
842
 
        int minFilterSize;
843
 
        double *filter=NULL;
844
 
        double *filter2=NULL;
845
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
846
 
        if(flags & SWS_CPU_CAPS_MMX)
847
 
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
848
 
#endif
849
 
 
850
 
        // Note the +1 is for the MMXscaler which reads over the end
851
 
        *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
852
 
 
853
 
        if(ABS(xInc - 0x10000) <10) // unscaled
854
 
        {
855
 
                int i;
856
 
                filterSize= 1;
857
 
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
858
 
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
859
 
 
860
 
                for(i=0; i<dstW; i++)
861
 
                {
862
 
                        filter[i*filterSize]=1;
863
 
                        (*filterPos)[i]=i;
864
 
                }
865
 
 
866
 
        }
867
 
        else if(flags&SWS_POINT) // lame looking point sampling mode
868
 
        {
869
 
                int i;
870
 
                int xDstInSrc;
871
 
                filterSize= 1;
872
 
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
873
 
                
874
 
                xDstInSrc= xInc/2 - 0x8000;
875
 
                for(i=0; i<dstW; i++)
876
 
                {
877
 
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
878
 
 
879
 
                        (*filterPos)[i]= xx;
880
 
                        filter[i]= 1.0;
881
 
                        xDstInSrc+= xInc;
882
 
                }
883
 
        }
884
 
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
885
 
        {
886
 
                int i;
887
 
                int xDstInSrc;
888
 
                if     (flags&SWS_BICUBIC) filterSize= 4;
889
 
                else if(flags&SWS_X      ) filterSize= 4;
890
 
                else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
891
 
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
892
 
 
893
 
                xDstInSrc= xInc/2 - 0x8000;
894
 
                for(i=0; i<dstW; i++)
895
 
                {
896
 
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
897
 
                        int j;
898
 
 
899
 
                        (*filterPos)[i]= xx;
900
 
                                //Bilinear upscale / linear interpolate / Area averaging
901
 
                                for(j=0; j<filterSize; j++)
902
 
                                {
903
 
                                        double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
904
 
                                        double coeff= 1.0 - d;
905
 
                                        if(coeff<0) coeff=0;
906
 
                                        filter[i*filterSize + j]= coeff;
907
 
                                        xx++;
908
 
                                }
909
 
                        xDstInSrc+= xInc;
910
 
                }
911
 
        }
912
 
        else
913
 
        {
914
 
                double xDstInSrc;
915
 
                double sizeFactor, filterSizeInSrc;
916
 
                const double xInc1= (double)xInc / (double)(1<<16);
917
 
 
918
 
                if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
919
 
                else if(flags&SWS_X)            sizeFactor= 8.0;
920
 
                else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
921
 
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
922
 
                else if(flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
923
 
                else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
924
 
                else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
925
 
                else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
926
 
                else {
927
 
                        sizeFactor= 0.0; //GCC warning killer
928
 
                        ASSERT(0)
929
 
                }
930
 
                
931
 
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
932
 
                else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
933
 
 
934
 
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
935
 
                if(filterSize > srcW-2) filterSize=srcW-2;
936
 
 
937
 
                filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
938
 
 
939
 
                xDstInSrc= xInc1 / 2.0 - 0.5;
940
 
                for(i=0; i<dstW; i++)
941
 
                {
942
 
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
943
 
                        int j;
944
 
                        (*filterPos)[i]= xx;
945
 
                        for(j=0; j<filterSize; j++)
946
 
                        {
947
 
                                double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
948
 
                                double coeff;
949
 
                                if(flags & SWS_BICUBIC)
950
 
                                {
951
 
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
952
 
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
953
 
 
954
 
                                        if(d<1.0) 
955
 
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
956
 
                                        else if(d<2.0)
957
 
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
958
 
                                        else
959
 
                                                coeff=0.0;
960
 
                                }
961
 
/*                              else if(flags & SWS_X)
962
 
                                {
963
 
                                        double p= param ? param*0.01 : 0.3;
964
 
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
965
 
                                        coeff*= pow(2.0, - p*d*d);
966
 
                                }*/
967
 
                                else if(flags & SWS_X)
968
 
                                {
969
 
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
970
 
                                        
971
 
                                        if(d<1.0)
972
 
                                                coeff = cos(d*PI);
973
 
                                        else
974
 
                                                coeff=-1.0;
975
 
                                        if(coeff<0.0)   coeff= -pow(-coeff, A);
976
 
                                        else            coeff=  pow( coeff, A);
977
 
                                        coeff= coeff*0.5 + 0.5;
978
 
                                }
979
 
                                else if(flags & SWS_AREA)
980
 
                                {
981
 
                                        double srcPixelSize= 1.0/xInc1;
982
 
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
983
 
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
984
 
                                        else coeff=0.0;
985
 
                                }
986
 
                                else if(flags & SWS_GAUSS)
987
 
                                {
988
 
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
989
 
                                        coeff = pow(2.0, - p*d*d);
990
 
                                }
991
 
                                else if(flags & SWS_SINC)
992
 
                                {
993
 
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
994
 
                                }
995
 
                                else if(flags & SWS_LANCZOS)
996
 
                                {
997
 
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
998
 
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
999
 
                                        if(d>p) coeff=0;
1000
 
                                }
1001
 
                                else if(flags & SWS_BILINEAR)
1002
 
                                {
1003
 
                                        coeff= 1.0 - d;
1004
 
                                        if(coeff<0) coeff=0;
1005
 
                                }
1006
 
                                else if(flags & SWS_SPLINE)
1007
 
                                {
1008
 
                                        double p=-2.196152422706632;
1009
 
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1010
 
                                }
1011
 
                                else {
1012
 
                                        coeff= 0.0; //GCC warning killer
1013
 
                                        ASSERT(0)
1014
 
                                }
1015
 
 
1016
 
                                filter[i*filterSize + j]= coeff;
1017
 
                                xx++;
1018
 
                        }
1019
 
                        xDstInSrc+= xInc1;
1020
 
                }
1021
 
        }
1022
 
 
1023
 
        /* apply src & dst Filter to filter -> filter2
1024
 
           free(filter);
1025
 
        */
1026
 
        ASSERT(filterSize>0)
1027
 
        filter2Size= filterSize;
1028
 
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1029
 
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1030
 
        ASSERT(filter2Size>0)
1031
 
        filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
1032
 
 
1033
 
        for(i=0; i<dstW; i++)
1034
 
        {
1035
 
                int j;
1036
 
                SwsVector scaleFilter;
1037
 
                SwsVector *outVec;
1038
 
 
1039
 
                scaleFilter.coeff= filter + i*filterSize;
1040
 
                scaleFilter.length= filterSize;
1041
 
 
1042
 
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1043
 
                else          outVec= &scaleFilter;
1044
 
 
1045
 
                ASSERT(outVec->length == filter2Size)
1046
 
                //FIXME dstFilter
1047
 
 
1048
 
                for(j=0; j<outVec->length; j++)
1049
 
                {
1050
 
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1051
 
                }
1052
 
 
1053
 
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1054
 
 
1055
 
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1056
 
        }
1057
 
        free(filter); filter=NULL;
1058
 
 
1059
 
        /* try to reduce the filter-size (step1 find size and shift left) */
1060
 
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1061
 
        minFilterSize= 0;
1062
 
        for(i=dstW-1; i>=0; i--)
1063
 
        {
1064
 
                int min= filter2Size;
1065
 
                int j;
1066
 
                double cutOff=0.0;
1067
 
 
1068
 
                /* get rid off near zero elements on the left by shifting left */
1069
 
                for(j=0; j<filter2Size; j++)
1070
 
                {
1071
 
                        int k;
1072
 
                        cutOff += ABS(filter2[i*filter2Size]);
1073
 
 
1074
 
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1075
 
 
1076
 
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1077
 
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1078
 
 
1079
 
                        // Move filter coeffs left
1080
 
                        for(k=1; k<filter2Size; k++)
1081
 
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1082
 
                        filter2[i*filter2Size + k - 1]= 0.0;
1083
 
                        (*filterPos)[i]++;
1084
 
                }
1085
 
 
1086
 
                cutOff=0.0;
1087
 
                /* count near zeros on the right */
1088
 
                for(j=filter2Size-1; j>0; j--)
1089
 
                {
1090
 
                        cutOff += ABS(filter2[i*filter2Size + j]);
1091
 
 
1092
 
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1093
 
                        min--;
1094
 
                }
1095
 
 
1096
 
                if(min>minFilterSize) minFilterSize= min;
1097
 
        }
1098
 
 
1099
 
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1100
 
          // we can handle the special case 4,
1101
 
          // so we don't want to go to the full 8
1102
 
          if (minFilterSize < 5)
1103
 
            filterAlign = 4;
1104
 
 
1105
 
          // we really don't want to waste our time
1106
 
          // doing useless computation, so fall-back on
1107
 
          // the scalar C code for very small filter.
1108
 
          // vectorizing is worth it only if you have
1109
 
          // decent-sized vector.
1110
 
          if (minFilterSize < 3)
1111
 
            filterAlign = 1;
1112
 
        }
1113
 
 
1114
 
        ASSERT(minFilterSize > 0)
1115
 
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1116
 
        ASSERT(filterSize > 0)
1117
 
        filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1118
 
        *outFilterSize= filterSize;
1119
 
 
1120
 
        if(flags&SWS_PRINT_INFO)
1121
 
                MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1122
 
        /* try to reduce the filter-size (step2 reduce it) */
1123
 
        for(i=0; i<dstW; i++)
1124
 
        {
1125
 
                int j;
1126
 
 
1127
 
                for(j=0; j<filterSize; j++)
1128
 
                {
1129
 
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1130
 
                        else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1131
 
                }
1132
 
        }
1133
 
        free(filter2); filter2=NULL;
1134
 
        
1135
 
 
1136
 
        //FIXME try to align filterpos if possible
1137
 
 
1138
 
        //fix borders
1139
 
        for(i=0; i<dstW; i++)
1140
 
        {
1141
 
                int j;
1142
 
                if((*filterPos)[i] < 0)
1143
 
                {
1144
 
                        // Move filter coeffs left to compensate for filterPos
1145
 
                        for(j=1; j<filterSize; j++)
1146
 
                        {
1147
 
                                int left= MAX(j + (*filterPos)[i], 0);
1148
 
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1149
 
                                filter[i*filterSize + j]=0;
1150
 
                        }
1151
 
                        (*filterPos)[i]= 0;
1152
 
                }
1153
 
 
1154
 
                if((*filterPos)[i] + filterSize > srcW)
1155
 
                {
1156
 
                        int shift= (*filterPos)[i] + filterSize - srcW;
1157
 
                        // Move filter coeffs right to compensate for filterPos
1158
 
                        for(j=filterSize-2; j>=0; j--)
1159
 
                        {
1160
 
                                int right= MIN(j + shift, filterSize-1);
1161
 
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1162
 
                                filter[i*filterSize +j]=0;
1163
 
                        }
1164
 
                        (*filterPos)[i]= srcW - filterSize;
1165
 
                }
1166
 
        }
1167
 
 
1168
 
        // Note the +1 is for the MMXscaler which reads over the end
1169
 
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1170
 
        *outFilter= (int16_t*)memalign(16, *outFilterSize*(dstW+1)*sizeof(int16_t));
1171
 
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1172
 
 
1173
 
        /* Normalize & Store in outFilter */
1174
 
        for(i=0; i<dstW; i++)
1175
 
        {
1176
 
                int j;
1177
 
                double error=0;
1178
 
                double sum=0;
1179
 
                double scale= one;
1180
 
 
1181
 
                for(j=0; j<filterSize; j++)
1182
 
                {
1183
 
                        sum+= filter[i*filterSize + j];
1184
 
                }
1185
 
                scale/= sum;
1186
 
                for(j=0; j<*outFilterSize; j++)
1187
 
                {
1188
 
                        double v= filter[i*filterSize + j]*scale + error;
1189
 
                        int intV= floor(v + 0.5);
1190
 
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1191
 
                        error = v - intV;
1192
 
                }
1193
 
        }
1194
 
        
1195
 
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1196
 
        for(i=0; i<*outFilterSize; i++)
1197
 
        {
1198
 
                int j= dstW*(*outFilterSize);
1199
 
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1200
 
        }
1201
 
 
1202
 
        free(filter);
1203
 
}
1204
 
 
1205
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1206
 
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1207
 
{
1208
 
        uint8_t *fragmentA;
1209
 
        long imm8OfPShufW1A;
1210
 
        long imm8OfPShufW2A;
1211
 
        long fragmentLengthA;
1212
 
        uint8_t *fragmentB;
1213
 
        long imm8OfPShufW1B;
1214
 
        long imm8OfPShufW2B;
1215
 
        long fragmentLengthB;
1216
 
        int fragmentPos;
1217
 
 
1218
 
        int xpos, i;
1219
 
 
1220
 
        // create an optimized horizontal scaling routine
1221
 
 
1222
 
        //code fragment
1223
 
 
1224
 
        asm volatile(
1225
 
                "jmp 9f                         \n\t"
1226
 
        // Begin
1227
 
                "0:                             \n\t"
1228
 
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1229
 
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1230
 
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1231
 
                "punpcklbw %%mm7, %%mm1         \n\t"
1232
 
                "punpcklbw %%mm7, %%mm0         \n\t"
1233
 
                "pshufw $0xFF, %%mm1, %%mm1     \n\t"
1234
 
                "1:                             \n\t"
1235
 
                "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1236
 
                "2:                             \n\t"
1237
 
                "psubw %%mm1, %%mm0             \n\t"
1238
 
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1239
 
                "pmullw %%mm3, %%mm0            \n\t"
1240
 
                "psllw $7, %%mm1                \n\t"
1241
 
                "paddw %%mm1, %%mm0             \n\t"
1242
 
 
1243
 
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1244
 
 
1245
 
                "add $8, %%"REG_a"              \n\t"
1246
 
        // End
1247
 
                "9:                             \n\t"
1248
 
//              "int $3\n\t"
1249
 
                "lea 0b, %0                     \n\t"
1250
 
                "lea 1b, %1                     \n\t"
1251
 
                "lea 2b, %2                     \n\t"
1252
 
                "dec %1                         \n\t"
1253
 
                "dec %2                         \n\t"
1254
 
                "sub %0, %1                     \n\t"
1255
 
                "sub %0, %2                     \n\t"
1256
 
                "lea 9b, %3                     \n\t"
1257
 
                "sub %0, %3                     \n\t"
1258
 
 
1259
 
 
1260
 
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1261
 
                "=r" (fragmentLengthA)
1262
 
        );
1263
 
 
1264
 
        asm volatile(
1265
 
                "jmp 9f                         \n\t"
1266
 
        // Begin
1267
 
                "0:                             \n\t"
1268
 
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1269
 
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1270
 
                "punpcklbw %%mm7, %%mm0         \n\t"
1271
 
                "pshufw $0xFF, %%mm0, %%mm1     \n\t"
1272
 
                "1:                             \n\t"
1273
 
                "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1274
 
                "2:                             \n\t"
1275
 
                "psubw %%mm1, %%mm0             \n\t"
1276
 
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1277
 
                "pmullw %%mm3, %%mm0            \n\t"
1278
 
                "psllw $7, %%mm1                \n\t"
1279
 
                "paddw %%mm1, %%mm0             \n\t"
1280
 
 
1281
 
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1282
 
 
1283
 
                "add $8, %%"REG_a"              \n\t"
1284
 
        // End
1285
 
                "9:                             \n\t"
1286
 
//              "int $3\n\t"
1287
 
                "lea 0b, %0                     \n\t"
1288
 
                "lea 1b, %1                     \n\t"
1289
 
                "lea 2b, %2                     \n\t"
1290
 
                "dec %1                         \n\t"
1291
 
                "dec %2                         \n\t"
1292
 
                "sub %0, %1                     \n\t"
1293
 
                "sub %0, %2                     \n\t"
1294
 
                "lea 9b, %3                     \n\t"
1295
 
                "sub %0, %3                     \n\t"
1296
 
 
1297
 
 
1298
 
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1299
 
                "=r" (fragmentLengthB)
1300
 
        );
1301
 
 
1302
 
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1303
 
        fragmentPos=0;
1304
 
        
1305
 
        for(i=0; i<dstW/numSplits; i++)
1306
 
        {
1307
 
                int xx=xpos>>16;
1308
 
 
1309
 
                if((i&3) == 0)
1310
 
                {
1311
 
                        int a=0;
1312
 
                        int b=((xpos+xInc)>>16) - xx;
1313
 
                        int c=((xpos+xInc*2)>>16) - xx;
1314
 
                        int d=((xpos+xInc*3)>>16) - xx;
1315
 
 
1316
 
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1317
 
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1318
 
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1319
 
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1320
 
                        filterPos[i/2]= xx;
1321
 
 
1322
 
                        if(d+1<4)
1323
 
                        {
1324
 
                                int maxShift= 3-(d+1);
1325
 
                                int shift=0;
1326
 
 
1327
 
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1328
 
 
1329
 
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1330
 
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1331
 
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1332
 
                                        a | (b<<2) | (c<<4) | (d<<6);
1333
 
 
1334
 
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1335
 
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1336
 
 
1337
 
                                if(shift && i>=shift)
1338
 
                                {
1339
 
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1340
 
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1341
 
                                        filterPos[i/2]-=shift;
1342
 
                                }
1343
 
 
1344
 
                                fragmentPos+= fragmentLengthB;
1345
 
                        }
1346
 
                        else
1347
 
                        {
1348
 
                                int maxShift= 3-d;
1349
 
                                int shift=0;
1350
 
 
1351
 
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1352
 
 
1353
 
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1354
 
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1355
 
                                        a | (b<<2) | (c<<4) | (d<<6);
1356
 
 
1357
 
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1358
 
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1359
 
 
1360
 
                                if(shift && i>=shift)
1361
 
                                {
1362
 
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1363
 
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1364
 
                                        filterPos[i/2]-=shift;
1365
 
                                }
1366
 
 
1367
 
                                fragmentPos+= fragmentLengthA;
1368
 
                        }
1369
 
 
1370
 
                        funnyCode[fragmentPos]= RET;
1371
 
                }
1372
 
                xpos+=xInc;
1373
 
        }
1374
 
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1375
 
}
1376
 
#endif // ARCH_X86 || ARCH_X86_64
1377
 
 
1378
 
static void globalInit(void){
1379
 
    // generating tables:
1380
 
    int i;
1381
 
    for(i=0; i<768; i++){
1382
 
        int c= MIN(MAX(i-256, 0), 255);
1383
 
        clip_table[i]=c;
1384
 
    }
1385
 
}
1386
 
 
1387
 
static SwsFunc getSwsFunc(int flags){
1388
 
    
1389
 
#ifdef RUNTIME_CPUDETECT
1390
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1391
 
        // ordered per speed fasterst first
1392
 
        if(flags & SWS_CPU_CAPS_MMX2)
1393
 
                return swScale_MMX2;
1394
 
        else if(flags & SWS_CPU_CAPS_3DNOW)
1395
 
                return swScale_3DNow;
1396
 
        else if(flags & SWS_CPU_CAPS_MMX)
1397
 
                return swScale_MMX;
1398
 
        else
1399
 
                return swScale_C;
1400
 
 
1401
 
#else
1402
 
#ifdef ARCH_POWERPC
1403
 
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1404
 
          return swScale_altivec;
1405
 
        else
1406
 
          return swScale_C;
1407
 
#endif
1408
 
        return swScale_C;
1409
 
#endif
1410
 
#else //RUNTIME_CPUDETECT
1411
 
#ifdef HAVE_MMX2
1412
 
        return swScale_MMX2;
1413
 
#elif defined (HAVE_3DNOW)
1414
 
        return swScale_3DNow;
1415
 
#elif defined (HAVE_MMX)
1416
 
        return swScale_MMX;
1417
 
#elif defined (HAVE_ALTIVEC)
1418
 
        return swScale_altivec;
1419
 
#else
1420
 
        return swScale_C;
1421
 
#endif
1422
 
#endif //!RUNTIME_CPUDETECT
1423
 
}
1424
 
 
1425
 
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1426
 
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1427
 
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1428
 
        /* Copy Y plane */
1429
 
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1430
 
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1431
 
        else
1432
 
        {
1433
 
                int i;
1434
 
                uint8_t *srcPtr= src[0];
1435
 
                uint8_t *dstPtr= dst;
1436
 
                for(i=0; i<srcSliceH; i++)
1437
 
                {
1438
 
                        memcpy(dstPtr, srcPtr, c->srcW);
1439
 
                        srcPtr+= srcStride[0];
1440
 
                        dstPtr+= dstStride[0];
1441
 
                }
1442
 
        }
1443
 
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1444
 
        if (c->dstFormat == IMGFMT_NV12)
1445
 
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1446
 
        else
1447
 
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1448
 
 
1449
 
        return srcSliceH;
1450
 
}
1451
 
 
1452
 
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1453
 
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1454
 
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1455
 
 
1456
 
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1457
 
 
1458
 
        return srcSliceH;
1459
 
}
1460
 
 
1461
 
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1462
 
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1463
 
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1464
 
 
1465
 
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1466
 
 
1467
 
        return srcSliceH;
1468
 
}
1469
 
 
1470
 
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1471
 
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1472
 
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1473
 
        const int srcFormat= c->srcFormat;
1474
 
        const int dstFormat= c->dstFormat;
1475
 
        const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1476
 
        const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1477
 
        const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1478
 
        const int dstId= (dstFormat&0xFF)>>2;
1479
 
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1480
 
 
1481
 
        /* BGR -> BGR */
1482
 
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1483
 
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1484
 
                switch(srcId | (dstId<<4)){
1485
 
                case 0x34: conv= rgb16to15; break;
1486
 
                case 0x36: conv= rgb24to15; break;
1487
 
                case 0x38: conv= rgb32to15; break;
1488
 
                case 0x43: conv= rgb15to16; break;
1489
 
                case 0x46: conv= rgb24to16; break;
1490
 
                case 0x48: conv= rgb32to16; break;
1491
 
                case 0x63: conv= rgb15to24; break;
1492
 
                case 0x64: conv= rgb16to24; break;
1493
 
                case 0x68: conv= rgb32to24; break;
1494
 
                case 0x83: conv= rgb15to32; break;
1495
 
                case 0x84: conv= rgb16to32; break;
1496
 
                case 0x86: conv= rgb24to32; break;
1497
 
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1498
 
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1499
 
                }
1500
 
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1501
 
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1502
 
                switch(srcId | (dstId<<4)){
1503
 
                case 0x33: conv= rgb15tobgr15; break;
1504
 
                case 0x34: conv= rgb16tobgr15; break;
1505
 
                case 0x36: conv= rgb24tobgr15; break;
1506
 
                case 0x38: conv= rgb32tobgr15; break;
1507
 
                case 0x43: conv= rgb15tobgr16; break;
1508
 
                case 0x44: conv= rgb16tobgr16; break;
1509
 
                case 0x46: conv= rgb24tobgr16; break;
1510
 
                case 0x48: conv= rgb32tobgr16; break;
1511
 
                case 0x63: conv= rgb15tobgr24; break;
1512
 
                case 0x64: conv= rgb16tobgr24; break;
1513
 
                case 0x66: conv= rgb24tobgr24; break;
1514
 
                case 0x68: conv= rgb32tobgr24; break;
1515
 
                case 0x83: conv= rgb15tobgr32; break;
1516
 
                case 0x84: conv= rgb16tobgr32; break;
1517
 
                case 0x86: conv= rgb24tobgr32; break;
1518
 
                case 0x88: conv= rgb32tobgr32; break;
1519
 
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1520
 
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1521
 
                }
1522
 
        }else{
1523
 
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1524
 
                         vo_format_name(srcFormat), vo_format_name(dstFormat));
1525
 
        }
1526
 
 
1527
 
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1528
 
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1529
 
        else
1530
 
        {
1531
 
                int i;
1532
 
                uint8_t *srcPtr= src[0];
1533
 
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1534
 
 
1535
 
                for(i=0; i<srcSliceH; i++)
1536
 
                {
1537
 
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1538
 
                        srcPtr+= srcStride[0];
1539
 
                        dstPtr+= dstStride[0];
1540
 
                }
1541
 
        }     
1542
 
        return srcSliceH;
1543
 
}
1544
 
 
1545
 
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1546
 
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1547
 
 
1548
 
        rgb24toyv12(
1549
 
                src[0], 
1550
 
                dst[0]+ srcSliceY    *dstStride[0], 
1551
 
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1552
 
                dst[2]+(srcSliceY>>1)*dstStride[2],
1553
 
                c->srcW, srcSliceH, 
1554
 
                dstStride[0], dstStride[1], srcStride[0]);
1555
 
        return srcSliceH;
1556
 
}
1557
 
 
1558
 
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1559
 
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1560
 
        int i;
1561
 
 
1562
 
        /* copy Y */
1563
 
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1564
 
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1565
 
        else{
1566
 
                uint8_t *srcPtr= src[0];
1567
 
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1568
 
 
1569
 
                for(i=0; i<srcSliceH; i++)
1570
 
                {
1571
 
                        memcpy(dstPtr, srcPtr, c->srcW);
1572
 
                        srcPtr+= srcStride[0];
1573
 
                        dstPtr+= dstStride[0];
1574
 
                }
1575
 
        }
1576
 
 
1577
 
        if(c->dstFormat==IMGFMT_YV12){
1578
 
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1579
 
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1580
 
        }else{
1581
 
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1582
 
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1583
 
        }
1584
 
        return srcSliceH;
1585
 
}
1586
 
 
1587
 
/**
1588
 
 * bring pointers in YUV order instead of YVU
1589
 
 */
1590
 
static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1591
 
        if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1592
 
           || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1593
 
                sortedP[0]= p[0];
1594
 
                sortedP[1]= p[2];
1595
 
                sortedP[2]= p[1];
1596
 
                sortedStride[0]= stride[0];
1597
 
                sortedStride[1]= stride[2];
1598
 
                sortedStride[2]= stride[1];
1599
 
        }
1600
 
        else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1601
 
        {
1602
 
                sortedP[0]= p[0];
1603
 
                sortedP[1]= 
1604
 
                sortedP[2]= NULL;
1605
 
                sortedStride[0]= stride[0];
1606
 
                sortedStride[1]= 
1607
 
                sortedStride[2]= 0;
1608
 
        }
1609
 
        else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1610
 
        {
1611
 
                sortedP[0]= p[0];
1612
 
                sortedP[1]= p[1];
1613
 
                sortedP[2]= p[2];
1614
 
                sortedStride[0]= stride[0];
1615
 
                sortedStride[1]= stride[1];
1616
 
                sortedStride[2]= stride[2];
1617
 
        }
1618
 
        else if(format == IMGFMT_NV12 || format == IMGFMT_NV21)
1619
 
        {
1620
 
                sortedP[0]= p[0];
1621
 
                sortedP[1]= p[1];
1622
 
                sortedP[2]= NULL;
1623
 
                sortedStride[0]= stride[0];
1624
 
                sortedStride[1]= stride[1];
1625
 
                sortedStride[2]= 0;
1626
 
        }else{
1627
 
                MSG_ERR("internal error in orderYUV\n");
1628
 
        }
1629
 
}
1630
 
 
1631
 
/* unscaled copy like stuff (assumes nearly identical formats) */
1632
 
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633
 
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1634
 
 
1635
 
        if(isPacked(c->srcFormat))
1636
 
        {
1637
 
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1638
 
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1639
 
                else
1640
 
                {
1641
 
                        int i;
1642
 
                        uint8_t *srcPtr= src[0];
1643
 
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1644
 
                        int length=0;
1645
 
 
1646
 
                        /* universal length finder */
1647
 
                        while(length+c->srcW <= ABS(dstStride[0]) 
1648
 
                           && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1649
 
                        ASSERT(length!=0);
1650
 
 
1651
 
                        for(i=0; i<srcSliceH; i++)
1652
 
                        {
1653
 
                                memcpy(dstPtr, srcPtr, length);
1654
 
                                srcPtr+= srcStride[0];
1655
 
                                dstPtr+= dstStride[0];
1656
 
                        }
1657
 
                }
1658
 
        }
1659
 
        else 
1660
 
        { /* Planar YUV or gray */
1661
 
                int plane;
1662
 
                for(plane=0; plane<3; plane++)
1663
 
                {
1664
 
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1665
 
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1666
 
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1667
 
 
1668
 
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1669
 
                        {
1670
 
                                if(!isGray(c->dstFormat))
1671
 
                                        memset(dst[plane], 128, dstStride[plane]*height);
1672
 
                        }
1673
 
                        else
1674
 
                        {
1675
 
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1676
 
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1677
 
                                else
1678
 
                                {
1679
 
                                        int i;
1680
 
                                        uint8_t *srcPtr= src[plane];
1681
 
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1682
 
                                        for(i=0; i<height; i++)
1683
 
                                        {
1684
 
                                                memcpy(dstPtr, srcPtr, length);
1685
 
                                                srcPtr+= srcStride[plane];
1686
 
                                                dstPtr+= dstStride[plane];
1687
 
                                        }
1688
 
                                }
1689
 
                        }
1690
 
                }
1691
 
        }
1692
 
        return srcSliceH;
1693
 
}
1694
 
 
1695
 
static int remove_dup_fourcc(int fourcc)
1696
 
{
1697
 
        switch(fourcc)
1698
 
        {
1699
 
            case IMGFMT_I420:
1700
 
            case IMGFMT_IYUV: return IMGFMT_YV12;
1701
 
            case IMGFMT_Y8  : return IMGFMT_Y800;
1702
 
            case IMGFMT_IF09: return IMGFMT_YVU9;
1703
 
            default: return fourcc;
1704
 
        }
1705
 
}
1706
 
 
1707
 
static void getSubSampleFactors(int *h, int *v, int format){
1708
 
        switch(format){
1709
 
        case IMGFMT_UYVY:
1710
 
        case IMGFMT_YUY2:
1711
 
                *h=1;
1712
 
                *v=0;
1713
 
                break;
1714
 
        case IMGFMT_YV12:
1715
 
        case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1716
 
        case IMGFMT_NV12:
1717
 
        case IMGFMT_NV21:
1718
 
                *h=1;
1719
 
                *v=1;
1720
 
                break;
1721
 
        case IMGFMT_YVU9:
1722
 
                *h=2;
1723
 
                *v=2;
1724
 
                break;
1725
 
        case IMGFMT_444P:
1726
 
                *h=0;
1727
 
                *v=0;
1728
 
                break;
1729
 
        case IMGFMT_422P:
1730
 
                *h=1;
1731
 
                *v=0;
1732
 
                break;
1733
 
        case IMGFMT_411P:
1734
 
                *h=2;
1735
 
                *v=0;
1736
 
                break;
1737
 
        default:
1738
 
                *h=0;
1739
 
                *v=0;
1740
 
                break;
1741
 
        }
1742
 
}
1743
 
 
1744
 
static uint16_t roundToInt16(int64_t f){
1745
 
        int r= (f + (1<<15))>>16;
1746
 
             if(r<-0x7FFF) return 0x8000;
1747
 
        else if(r> 0x7FFF) return 0x7FFF;
1748
 
        else               return r;
1749
 
}
1750
 
 
1751
 
/**
1752
 
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1753
 
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1754
 
 * @return -1 if not supported
1755
 
 */
1756
 
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1757
 
        int64_t crv =  inv_table[0];
1758
 
        int64_t cbu =  inv_table[1];
1759
 
        int64_t cgu = -inv_table[2];
1760
 
        int64_t cgv = -inv_table[3];
1761
 
        int64_t cy  = 1<<16;
1762
 
        int64_t oy  = 0;
1763
 
 
1764
 
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1765
 
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1766
 
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1767
 
 
1768
 
        c->brightness= brightness;
1769
 
        c->contrast  = contrast;
1770
 
        c->saturation= saturation;
1771
 
        c->srcRange  = srcRange;
1772
 
        c->dstRange  = dstRange;
1773
 
 
1774
 
        c->uOffset=   0x0400040004000400LL;
1775
 
        c->vOffset=   0x0400040004000400LL;
1776
 
 
1777
 
        if(!srcRange){
1778
 
                cy= (cy*255) / 219;
1779
 
                oy= 16<<16;
1780
 
        }
1781
 
 
1782
 
        cy = (cy *contrast             )>>16;
1783
 
        crv= (crv*contrast * saturation)>>32;
1784
 
        cbu= (cbu*contrast * saturation)>>32;
1785
 
        cgu= (cgu*contrast * saturation)>>32;
1786
 
        cgv= (cgv*contrast * saturation)>>32;
1787
 
 
1788
 
        oy -= 256*brightness;
1789
 
 
1790
 
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1791
 
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1792
 
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1793
 
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1794
 
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1795
 
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1796
 
 
1797
 
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1798
 
        //FIXME factorize
1799
 
 
1800
 
#ifdef COMPILE_ALTIVEC
1801
 
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1802
 
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1803
 
#endif  
1804
 
        return 0;
1805
 
}
1806
 
 
1807
 
/**
1808
 
 * @return -1 if not supported
1809
 
 */
1810
 
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1811
 
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1812
 
 
1813
 
        *inv_table = c->srcColorspaceTable;
1814
 
        *table     = c->dstColorspaceTable;
1815
 
        *srcRange  = c->srcRange;
1816
 
        *dstRange  = c->dstRange;
1817
 
        *brightness= c->brightness;
1818
 
        *contrast  = c->contrast;
1819
 
        *saturation= c->saturation;
1820
 
        
1821
 
        return 0;       
1822
 
}
1823
 
 
1824
 
SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1825
 
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1826
 
 
1827
 
        SwsContext *c;
1828
 
        int i;
1829
 
        int usesVFilter, usesHFilter;
1830
 
        int unscaled, needsDither;
1831
 
        int srcFormat, dstFormat;
1832
 
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1833
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1834
 
        if(flags & SWS_CPU_CAPS_MMX)
1835
 
                asm volatile("emms\n\t"::: "memory");
1836
 
#endif
1837
 
 
1838
 
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1839
 
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1840
 
#ifdef HAVE_MMX2
1841
 
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1842
 
#elif defined (HAVE_3DNOW)
1843
 
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1844
 
#elif defined (HAVE_MMX)
1845
 
        flags |= SWS_CPU_CAPS_MMX;
1846
 
#elif defined (HAVE_ALTIVEC)
1847
 
        flags |= SWS_CPU_CAPS_ALTIVEC;
1848
 
#endif
1849
 
#endif
1850
 
        if(clip_table[512] != 255) globalInit();
1851
 
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1852
 
 
1853
 
        /* avoid duplicate Formats, so we don't need to check to much */
1854
 
        srcFormat = remove_dup_fourcc(origSrcFormat);
1855
 
        dstFormat = remove_dup_fourcc(origDstFormat);
1856
 
 
1857
 
        unscaled = (srcW == dstW && srcH == dstH);
1858
 
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1859
 
                     && (dstFormat&0xFF)<24
1860
 
                     && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1861
 
 
1862
 
        if(!isSupportedIn(srcFormat)) 
1863
 
        {
1864
 
                MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1865
 
                return NULL;
1866
 
        }
1867
 
        if(!isSupportedOut(dstFormat))
1868
 
        {
1869
 
                MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1870
 
                return NULL;
1871
 
        }
1872
 
 
1873
 
        /* sanity check */
1874
 
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1875
 
        {
1876
 
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1877
 
                        srcW, srcH, dstW, dstH);
1878
 
                return NULL;
1879
 
        }
1880
 
 
1881
 
        if(!dstFilter) dstFilter= &dummyFilter;
1882
 
        if(!srcFilter) srcFilter= &dummyFilter;
1883
 
 
1884
 
        c= memalign(64, sizeof(SwsContext));
1885
 
        memset(c, 0, sizeof(SwsContext));
1886
 
 
1887
 
        c->srcW= srcW;
1888
 
        c->srcH= srcH;
1889
 
        c->dstW= dstW;
1890
 
        c->dstH= dstH;
1891
 
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1892
 
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1893
 
        c->flags= flags;
1894
 
        c->dstFormat= dstFormat;
1895
 
        c->srcFormat= srcFormat;
1896
 
        c->origDstFormat= origDstFormat;
1897
 
        c->origSrcFormat= origSrcFormat;
1898
 
        c->vRounder= 4* 0x0001000100010001ULL;
1899
 
 
1900
 
        usesHFilter= usesVFilter= 0;
1901
 
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1902
 
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1903
 
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1904
 
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1905
 
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1906
 
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1907
 
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1908
 
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1909
 
 
1910
 
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1911
 
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1912
 
 
1913
 
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1914
 
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1915
 
 
1916
 
        // drop some chroma lines if the user wants it
1917
 
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1918
 
        c->chrSrcVSubSample+= c->vChrDrop;
1919
 
 
1920
 
        // drop every 2. pixel for chroma calculation unless user wants full chroma
1921
 
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1922
 
                c->chrSrcHSubSample=1;
1923
 
 
1924
 
        if(param){
1925
 
                c->param[0] = param[0];
1926
 
                c->param[1] = param[1];
1927
 
        }else{
1928
 
                c->param[0] =
1929
 
                c->param[1] = SWS_PARAM_DEFAULT;
1930
 
        }
1931
 
 
1932
 
        c->chrIntHSubSample= c->chrDstHSubSample;
1933
 
        c->chrIntVSubSample= c->chrSrcVSubSample;
1934
 
 
1935
 
        // note the -((-x)>>y) is so that we allways round toward +inf
1936
 
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1937
 
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1938
 
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1939
 
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1940
 
 
1941
 
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1942
 
 
1943
 
        /* unscaled special Cases */
1944
 
        if(unscaled && !usesHFilter && !usesVFilter)
1945
 
        {
1946
 
                /* yv12_to_nv12 */
1947
 
                if(srcFormat == IMGFMT_YV12 && (dstFormat == IMGFMT_NV12 || dstFormat == IMGFMT_NV21))
1948
 
                {
1949
 
                        c->swScale= PlanarToNV12Wrapper;
1950
 
                }
1951
 
                /* yuv2bgr */
1952
 
                if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1953
 
                {
1954
 
                        c->swScale= yuv2rgb_get_func_ptr(c);
1955
 
                }
1956
 
                
1957
 
                if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1958
 
                {
1959
 
                        c->swScale= yvu9toyv12Wrapper;
1960
 
                }
1961
 
 
1962
 
                /* bgr24toYV12 */
1963
 
                if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1964
 
                        c->swScale= bgr24toyv12Wrapper;
1965
 
                
1966
 
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1967
 
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
1968
 
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
1969
 
                   && !needsDither)
1970
 
                        c->swScale= rgb2rgbWrapper;
1971
 
 
1972
 
                /* LQ converters if -sws 0 or -sws 4*/
1973
 
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1974
 
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
1975
 
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
1976
 
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
1977
 
                          && needsDither)
1978
 
                                c->swScale= rgb2rgbWrapper;
1979
 
 
1980
 
                        /* yv12_to_yuy2 */
1981
 
                        if(srcFormat == IMGFMT_YV12 && 
1982
 
                            (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1983
 
                        {
1984
 
                                if (dstFormat == IMGFMT_YUY2)
1985
 
                                    c->swScale= PlanarToYuy2Wrapper;
1986
 
                                else
1987
 
                                    c->swScale= PlanarToUyvyWrapper;
1988
 
                        }
1989
 
                }
1990
 
 
1991
 
#ifdef COMPILE_ALTIVEC
1992
 
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
1993
 
                    ((srcFormat == IMGFMT_YV12 && 
1994
 
                      (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
1995
 
                  // unscaled YV12 -> packed YUV, we want speed
1996
 
                  if (dstFormat == IMGFMT_YUY2)
1997
 
                    c->swScale= yv12toyuy2_unscaled_altivec;
1998
 
                  else
1999
 
                    c->swScale= yv12touyvy_unscaled_altivec;
2000
 
                }
2001
 
#endif
2002
 
 
2003
 
                /* simple copy */
2004
 
                if(   srcFormat == dstFormat
2005
 
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2006
 
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2007
 
                  )
2008
 
                {
2009
 
                        c->swScale= simpleCopy;
2010
 
                }
2011
 
 
2012
 
                if(c->swScale){
2013
 
                        if(flags&SWS_PRINT_INFO)
2014
 
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2015
 
                                        vo_format_name(srcFormat), vo_format_name(dstFormat));
2016
 
                        return c;
2017
 
                }
2018
 
        }
2019
 
 
2020
 
        if(flags & SWS_CPU_CAPS_MMX2)
2021
 
        {
2022
 
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2023
 
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2024
 
                {
2025
 
                        if(flags&SWS_PRINT_INFO)
2026
 
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2027
 
                }
2028
 
                if(usesHFilter) c->canMMX2BeUsed=0;
2029
 
        }
2030
 
        else
2031
 
                c->canMMX2BeUsed=0;
2032
 
 
2033
 
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2034
 
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2035
 
 
2036
 
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2037
 
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2038
 
        // n-2 is the last chrominance sample available
2039
 
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2040
 
        // would be like the vertical one, but that would require some special code for the
2041
 
        // first and last pixel
2042
 
        if(flags&SWS_FAST_BILINEAR)
2043
 
        {
2044
 
                if(c->canMMX2BeUsed)
2045
 
                {
2046
 
                        c->lumXInc+= 20;
2047
 
                        c->chrXInc+= 20;
2048
 
                }
2049
 
                //we don't use the x86asm scaler if mmx is available
2050
 
                else if(flags & SWS_CPU_CAPS_MMX)
2051
 
                {
2052
 
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2053
 
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2054
 
                }
2055
 
        }
2056
 
 
2057
 
        /* precalculate horizontal scaler filter coefficients */
2058
 
        {
2059
 
                const int filterAlign=
2060
 
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2061
 
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2062
 
                  1;
2063
 
 
2064
 
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2065
 
                                 srcW      ,       dstW, filterAlign, 1<<14,
2066
 
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2067
 
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2068
 
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2069
 
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2070
 
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2071
 
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2072
 
 
2073
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2074
 
// can't downscale !!!
2075
 
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2076
 
                {
2077
 
#define MAX_FUNNY_CODE_SIZE 10000
2078
 
#ifdef MAP_ANONYMOUS
2079
 
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2080
 
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2081
 
#else
2082
 
                        c->funnyYCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2083
 
                        c->funnyUVCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2084
 
#endif
2085
 
 
2086
 
                        c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2087
 
                        c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2088
 
                        c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2089
 
                        c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2090
 
 
2091
 
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2092
 
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2093
 
                }
2094
 
#endif
2095
 
        } // Init Horizontal stuff
2096
 
 
2097
 
 
2098
 
 
2099
 
        /* precalculate vertical scaler filter coefficients */
2100
 
        {
2101
 
                const int filterAlign=
2102
 
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2103
 
                  1;
2104
 
 
2105
 
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2106
 
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2107
 
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2108
 
                                srcFilter->lumV, dstFilter->lumV, c->param);
2109
 
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2110
 
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2111
 
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2112
 
                                srcFilter->chrV, dstFilter->chrV, c->param);
2113
 
 
2114
 
#ifdef HAVE_ALTIVEC
2115
 
                c->vYCoeffsBank = memalign (16, sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2116
 
                c->vCCoeffsBank = memalign (16, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2117
 
 
2118
 
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2119
 
                  int j;
2120
 
                  short *p = (short *)&c->vYCoeffsBank[i];
2121
 
                  for (j=0;j<8;j++)
2122
 
                    p[j] = c->vLumFilter[i];
2123
 
                }
2124
 
 
2125
 
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2126
 
                  int j;
2127
 
                  short *p = (short *)&c->vCCoeffsBank[i];
2128
 
                  for (j=0;j<8;j++)
2129
 
                    p[j] = c->vChrFilter[i];
2130
 
                }
2131
 
#endif
2132
 
        }
2133
 
 
2134
 
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2135
 
        c->vLumBufSize= c->vLumFilterSize;
2136
 
        c->vChrBufSize= c->vChrFilterSize;
2137
 
        for(i=0; i<dstH; i++)
2138
 
        {
2139
 
                int chrI= i*c->chrDstH / dstH;
2140
 
                int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2141
 
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2142
 
 
2143
 
                nextSlice>>= c->chrSrcVSubSample;
2144
 
                nextSlice<<= c->chrSrcVSubSample;
2145
 
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2146
 
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2147
 
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2148
 
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2149
 
        }
2150
 
 
2151
 
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2152
 
        c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2153
 
        c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2154
 
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2155
 
        /* align at 16 bytes for AltiVec */
2156
 
        for(i=0; i<c->vLumBufSize; i++)
2157
 
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(16, 4000);
2158
 
        for(i=0; i<c->vChrBufSize; i++)
2159
 
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(16, 8000);
2160
 
 
2161
 
        //try to avoid drawing green stuff between the right end and the stride end
2162
 
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2163
 
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2164
 
 
2165
 
        ASSERT(c->chrDstH <= dstH)
2166
 
 
2167
 
        if(flags&SWS_PRINT_INFO)
2168
 
        {
2169
 
#ifdef DITHER1XBPP
2170
 
                char *dither= " dithered";
2171
 
#else
2172
 
                char *dither= "";
2173
 
#endif
2174
 
                if(flags&SWS_FAST_BILINEAR)
2175
 
                        MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2176
 
                else if(flags&SWS_BILINEAR)
2177
 
                        MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2178
 
                else if(flags&SWS_BICUBIC)
2179
 
                        MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2180
 
                else if(flags&SWS_X)
2181
 
                        MSG_INFO("\nSwScaler: Experimental scaler, ");
2182
 
                else if(flags&SWS_POINT)
2183
 
                        MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2184
 
                else if(flags&SWS_AREA)
2185
 
                        MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2186
 
                else if(flags&SWS_BICUBLIN)
2187
 
                        MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2188
 
                else if(flags&SWS_GAUSS)
2189
 
                        MSG_INFO("\nSwScaler: Gaussian scaler, ");
2190
 
                else if(flags&SWS_SINC)
2191
 
                        MSG_INFO("\nSwScaler: Sinc scaler, ");
2192
 
                else if(flags&SWS_LANCZOS)
2193
 
                        MSG_INFO("\nSwScaler: Lanczos scaler, ");
2194
 
                else if(flags&SWS_SPLINE)
2195
 
                        MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2196
 
                else
2197
 
                        MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2198
 
 
2199
 
                if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2200
 
                        MSG_INFO("from %s to%s %s ", 
2201
 
                                vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2202
 
                else
2203
 
                        MSG_INFO("from %s to %s ", 
2204
 
                                vo_format_name(srcFormat), vo_format_name(dstFormat));
2205
 
 
2206
 
                if(flags & SWS_CPU_CAPS_MMX2)
2207
 
                        MSG_INFO("using MMX2\n");
2208
 
                else if(flags & SWS_CPU_CAPS_3DNOW)
2209
 
                        MSG_INFO("using 3DNOW\n");
2210
 
                else if(flags & SWS_CPU_CAPS_MMX)
2211
 
                        MSG_INFO("using MMX\n");
2212
 
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2213
 
                        MSG_INFO("using AltiVec\n");
2214
 
                else 
2215
 
                        MSG_INFO("using C\n");
2216
 
        }
2217
 
 
2218
 
        if(flags & SWS_PRINT_INFO)
2219
 
        {
2220
 
                if(flags & SWS_CPU_CAPS_MMX)
2221
 
                {
2222
 
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2223
 
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2224
 
                        else
2225
 
                        {
2226
 
                                if(c->hLumFilterSize==4)
2227
 
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2228
 
                                else if(c->hLumFilterSize==8)
2229
 
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2230
 
                                else
2231
 
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2232
 
 
2233
 
                                if(c->hChrFilterSize==4)
2234
 
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2235
 
                                else if(c->hChrFilterSize==8)
2236
 
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2237
 
                                else
2238
 
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2239
 
                        }
2240
 
                }
2241
 
                else
2242
 
                {
2243
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2244
 
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2245
 
#else
2246
 
                        if(flags & SWS_FAST_BILINEAR)
2247
 
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2248
 
                        else
2249
 
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2250
 
#endif
2251
 
                }
2252
 
                if(isPlanarYUV(dstFormat))
2253
 
                {
2254
 
                        if(c->vLumFilterSize==1)
2255
 
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2256
 
                        else
2257
 
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2258
 
                }
2259
 
                else
2260
 
                {
2261
 
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2262
 
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2263
 
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2264
 
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2265
 
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2266
 
                        else
2267
 
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2268
 
                }
2269
 
 
2270
 
                if(dstFormat==IMGFMT_BGR24)
2271
 
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2272
 
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2273
 
                else if(dstFormat==IMGFMT_BGR32)
2274
 
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2275
 
                else if(dstFormat==IMGFMT_BGR16)
2276
 
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2277
 
                else if(dstFormat==IMGFMT_BGR15)
2278
 
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2279
 
 
2280
 
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2281
 
        }
2282
 
        if(flags & SWS_PRINT_INFO)
2283
 
        {
2284
 
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2285
 
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2286
 
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2287
 
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2288
 
        }
2289
 
 
2290
 
        c->swScale= getSwsFunc(flags);
2291
 
        return c;
2292
 
}
2293
 
 
2294
 
/**
2295
 
 * swscale warper, so we don't need to export the SwsContext.
2296
 
 * assumes planar YUV to be in YUV order instead of YVU
2297
 
 */
2298
 
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2299
 
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2300
 
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2301
 
            MSG_ERR("swScaler: slices start in the middle!\n");
2302
 
            return 0;
2303
 
        }
2304
 
        if (c->sliceDir == 0) {
2305
 
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2306
 
        }
2307
 
 
2308
 
        // copy strides, so they can safely be modified
2309
 
        if (c->sliceDir == 1) {
2310
 
            // slices go from top to bottom
2311
 
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2312
 
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2313
 
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2314
 
        } else {
2315
 
            // slices go from bottom to top => we flip the image internally
2316
 
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2317
 
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2318
 
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2319
 
            };
2320
 
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2321
 
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2322
 
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2323
 
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2324
 
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2325
 
            
2326
 
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2327
 
        }
2328
 
}
2329
 
 
2330
 
/**
2331
 
 * swscale warper, so we don't need to export the SwsContext
2332
 
 */
2333
 
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2334
 
                           int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2335
 
        int srcStride[3];
2336
 
        int dstStride[3];
2337
 
        uint8_t *src[3];
2338
 
        uint8_t *dst[3];
2339
 
        sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2340
 
        sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2341
 
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2342
 
 
2343
 
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2344
 
}
2345
 
 
2346
 
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2347
 
                                float lumaSharpen, float chromaSharpen,
2348
 
                                float chromaHShift, float chromaVShift,
2349
 
                                int verbose)
2350
 
{
2351
 
        SwsFilter *filter= malloc(sizeof(SwsFilter));
2352
 
 
2353
 
        if(lumaGBlur!=0.0){
2354
 
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2355
 
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2356
 
        }else{
2357
 
                filter->lumH= sws_getIdentityVec();
2358
 
                filter->lumV= sws_getIdentityVec();
2359
 
        }
2360
 
 
2361
 
        if(chromaGBlur!=0.0){
2362
 
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2363
 
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2364
 
        }else{
2365
 
                filter->chrH= sws_getIdentityVec();
2366
 
                filter->chrV= sws_getIdentityVec();
2367
 
        }
2368
 
 
2369
 
        if(chromaSharpen!=0.0){
2370
 
                SwsVector *id= sws_getIdentityVec();
2371
 
                sws_scaleVec(filter->chrH, -chromaSharpen);
2372
 
                sws_scaleVec(filter->chrV, -chromaSharpen);
2373
 
                sws_addVec(filter->chrH, id);
2374
 
                sws_addVec(filter->chrV, id);
2375
 
                sws_freeVec(id);
2376
 
        }
2377
 
 
2378
 
        if(lumaSharpen!=0.0){
2379
 
                SwsVector *id= sws_getIdentityVec();
2380
 
                sws_scaleVec(filter->lumH, -lumaSharpen);
2381
 
                sws_scaleVec(filter->lumV, -lumaSharpen);
2382
 
                sws_addVec(filter->lumH, id);
2383
 
                sws_addVec(filter->lumV, id);
2384
 
                sws_freeVec(id);
2385
 
        }
2386
 
 
2387
 
        if(chromaHShift != 0.0)
2388
 
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2389
 
 
2390
 
        if(chromaVShift != 0.0)
2391
 
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2392
 
 
2393
 
        sws_normalizeVec(filter->chrH, 1.0);
2394
 
        sws_normalizeVec(filter->chrV, 1.0);
2395
 
        sws_normalizeVec(filter->lumH, 1.0);
2396
 
        sws_normalizeVec(filter->lumV, 1.0);
2397
 
 
2398
 
        if(verbose) sws_printVec(filter->chrH);
2399
 
        if(verbose) sws_printVec(filter->lumH);
2400
 
 
2401
 
        return filter;
2402
 
}
2403
 
 
2404
 
/**
2405
 
 * returns a normalized gaussian curve used to filter stuff
2406
 
 * quality=3 is high quality, lowwer is lowwer quality
2407
 
 */
2408
 
SwsVector *sws_getGaussianVec(double variance, double quality){
2409
 
        const int length= (int)(variance*quality + 0.5) | 1;
2410
 
        int i;
2411
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2412
 
        double middle= (length-1)*0.5;
2413
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2414
 
 
2415
 
        vec->coeff= coeff;
2416
 
        vec->length= length;
2417
 
 
2418
 
        for(i=0; i<length; i++)
2419
 
        {
2420
 
                double dist= i-middle;
2421
 
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2422
 
        }
2423
 
 
2424
 
        sws_normalizeVec(vec, 1.0);
2425
 
 
2426
 
        return vec;
2427
 
}
2428
 
 
2429
 
SwsVector *sws_getConstVec(double c, int length){
2430
 
        int i;
2431
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2432
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2433
 
 
2434
 
        vec->coeff= coeff;
2435
 
        vec->length= length;
2436
 
 
2437
 
        for(i=0; i<length; i++)
2438
 
                coeff[i]= c;
2439
 
 
2440
 
        return vec;
2441
 
}
2442
 
 
2443
 
 
2444
 
SwsVector *sws_getIdentityVec(void){
2445
 
        return sws_getConstVec(1.0, 1);
2446
 
}
2447
 
 
2448
 
double sws_dcVec(SwsVector *a){
2449
 
        int i;
2450
 
        double sum=0;
2451
 
 
2452
 
        for(i=0; i<a->length; i++)
2453
 
                sum+= a->coeff[i];
2454
 
 
2455
 
        return sum;
2456
 
}
2457
 
 
2458
 
void sws_scaleVec(SwsVector *a, double scalar){
2459
 
        int i;
2460
 
 
2461
 
        for(i=0; i<a->length; i++)
2462
 
                a->coeff[i]*= scalar;
2463
 
}
2464
 
 
2465
 
void sws_normalizeVec(SwsVector *a, double height){
2466
 
        sws_scaleVec(a, height/sws_dcVec(a));
2467
 
}
2468
 
 
2469
 
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2470
 
        int length= a->length + b->length - 1;
2471
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2472
 
        int i, j;
2473
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2474
 
 
2475
 
        vec->coeff= coeff;
2476
 
        vec->length= length;
2477
 
 
2478
 
        for(i=0; i<length; i++) coeff[i]= 0.0;
2479
 
 
2480
 
        for(i=0; i<a->length; i++)
2481
 
        {
2482
 
                for(j=0; j<b->length; j++)
2483
 
                {
2484
 
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2485
 
                }
2486
 
        }
2487
 
 
2488
 
        return vec;
2489
 
}
2490
 
 
2491
 
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2492
 
        int length= MAX(a->length, b->length);
2493
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2494
 
        int i;
2495
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2496
 
 
2497
 
        vec->coeff= coeff;
2498
 
        vec->length= length;
2499
 
 
2500
 
        for(i=0; i<length; i++) coeff[i]= 0.0;
2501
 
 
2502
 
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2503
 
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2504
 
 
2505
 
        return vec;
2506
 
}
2507
 
 
2508
 
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2509
 
        int length= MAX(a->length, b->length);
2510
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2511
 
        int i;
2512
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2513
 
 
2514
 
        vec->coeff= coeff;
2515
 
        vec->length= length;
2516
 
 
2517
 
        for(i=0; i<length; i++) coeff[i]= 0.0;
2518
 
 
2519
 
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2520
 
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2521
 
 
2522
 
        return vec;
2523
 
}
2524
 
 
2525
 
/* shift left / or right if "shift" is negative */
2526
 
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2527
 
        int length= a->length + ABS(shift)*2;
2528
 
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2529
 
        int i;
2530
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2531
 
 
2532
 
        vec->coeff= coeff;
2533
 
        vec->length= length;
2534
 
 
2535
 
        for(i=0; i<length; i++) coeff[i]= 0.0;
2536
 
 
2537
 
        for(i=0; i<a->length; i++)
2538
 
        {
2539
 
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2540
 
        }
2541
 
 
2542
 
        return vec;
2543
 
}
2544
 
 
2545
 
void sws_shiftVec(SwsVector *a, int shift){
2546
 
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2547
 
        free(a->coeff);
2548
 
        a->coeff= shifted->coeff;
2549
 
        a->length= shifted->length;
2550
 
        free(shifted);
2551
 
}
2552
 
 
2553
 
void sws_addVec(SwsVector *a, SwsVector *b){
2554
 
        SwsVector *sum= sws_sumVec(a, b);
2555
 
        free(a->coeff);
2556
 
        a->coeff= sum->coeff;
2557
 
        a->length= sum->length;
2558
 
        free(sum);
2559
 
}
2560
 
 
2561
 
void sws_subVec(SwsVector *a, SwsVector *b){
2562
 
        SwsVector *diff= sws_diffVec(a, b);
2563
 
        free(a->coeff);
2564
 
        a->coeff= diff->coeff;
2565
 
        a->length= diff->length;
2566
 
        free(diff);
2567
 
}
2568
 
 
2569
 
void sws_convVec(SwsVector *a, SwsVector *b){
2570
 
        SwsVector *conv= sws_getConvVec(a, b);
2571
 
        free(a->coeff);  
2572
 
        a->coeff= conv->coeff;
2573
 
        a->length= conv->length;
2574
 
        free(conv);
2575
 
}
2576
 
 
2577
 
SwsVector *sws_cloneVec(SwsVector *a){
2578
 
        double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2579
 
        int i;
2580
 
        SwsVector *vec= malloc(sizeof(SwsVector));
2581
 
 
2582
 
        vec->coeff= coeff;
2583
 
        vec->length= a->length;
2584
 
 
2585
 
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2586
 
 
2587
 
        return vec;
2588
 
}
2589
 
 
2590
 
void sws_printVec(SwsVector *a){
2591
 
        int i;
2592
 
        double max=0;
2593
 
        double min=0;
2594
 
        double range;
2595
 
 
2596
 
        for(i=0; i<a->length; i++)
2597
 
                if(a->coeff[i]>max) max= a->coeff[i];
2598
 
 
2599
 
        for(i=0; i<a->length; i++)
2600
 
                if(a->coeff[i]<min) min= a->coeff[i];
2601
 
 
2602
 
        range= max - min;
2603
 
 
2604
 
        for(i=0; i<a->length; i++)
2605
 
        {
2606
 
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2607
 
                MSG_DBG2("%1.3f ", a->coeff[i]);
2608
 
                for(;x>0; x--) MSG_DBG2(" ");
2609
 
                MSG_DBG2("|\n");
2610
 
        }
2611
 
}
2612
 
 
2613
 
void sws_freeVec(SwsVector *a){
2614
 
        if(!a) return;
2615
 
        if(a->coeff) free(a->coeff);
2616
 
        a->coeff=NULL;
2617
 
        a->length=0;
2618
 
        free(a);
2619
 
}
2620
 
 
2621
 
void sws_freeFilter(SwsFilter *filter){
2622
 
        if(!filter) return;
2623
 
 
2624
 
        if(filter->lumH) sws_freeVec(filter->lumH);
2625
 
        if(filter->lumV) sws_freeVec(filter->lumV);
2626
 
        if(filter->chrH) sws_freeVec(filter->chrH);
2627
 
        if(filter->chrV) sws_freeVec(filter->chrV);
2628
 
        free(filter);
2629
 
}
2630
 
 
2631
 
 
2632
 
void sws_freeContext(SwsContext *c){
2633
 
        int i;
2634
 
        if(!c) return;
2635
 
 
2636
 
        if(c->lumPixBuf)
2637
 
        {
2638
 
                for(i=0; i<c->vLumBufSize; i++)
2639
 
                {
2640
 
                        if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2641
 
                        c->lumPixBuf[i]=NULL;
2642
 
                }
2643
 
                free(c->lumPixBuf);
2644
 
                c->lumPixBuf=NULL;
2645
 
        }
2646
 
 
2647
 
        if(c->chrPixBuf)
2648
 
        {
2649
 
                for(i=0; i<c->vChrBufSize; i++)
2650
 
                {
2651
 
                        if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2652
 
                        c->chrPixBuf[i]=NULL;
2653
 
                }
2654
 
                free(c->chrPixBuf);
2655
 
                c->chrPixBuf=NULL;
2656
 
        }
2657
 
 
2658
 
        if(c->vLumFilter) free(c->vLumFilter);
2659
 
        c->vLumFilter = NULL;
2660
 
        if(c->vChrFilter) free(c->vChrFilter);
2661
 
        c->vChrFilter = NULL;
2662
 
        if(c->hLumFilter) free(c->hLumFilter);
2663
 
        c->hLumFilter = NULL;
2664
 
        if(c->hChrFilter) free(c->hChrFilter);
2665
 
        c->hChrFilter = NULL;
2666
 
#ifdef HAVE_ALTIVEC
2667
 
        if(c->vYCoeffsBank) free(c->vYCoeffsBank);
2668
 
        c->vYCoeffsBank = NULL;
2669
 
        if(c->vCCoeffsBank) free(c->vCCoeffsBank);
2670
 
        c->vCCoeffsBank = NULL;
2671
 
#endif
2672
 
 
2673
 
        if(c->vLumFilterPos) free(c->vLumFilterPos);
2674
 
        c->vLumFilterPos = NULL;
2675
 
        if(c->vChrFilterPos) free(c->vChrFilterPos);
2676
 
        c->vChrFilterPos = NULL;
2677
 
        if(c->hLumFilterPos) free(c->hLumFilterPos);
2678
 
        c->hLumFilterPos = NULL;
2679
 
        if(c->hChrFilterPos) free(c->hChrFilterPos);
2680
 
        c->hChrFilterPos = NULL;
2681
 
 
2682
 
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2683
 
#ifdef MAP_ANONYMOUS
2684
 
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2685
 
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2686
 
#else
2687
 
        if(c->funnyYCode) free(c->funnyYCode);
2688
 
        if(c->funnyUVCode) free(c->funnyUVCode);
2689
 
#endif
2690
 
        c->funnyYCode=NULL;
2691
 
        c->funnyUVCode=NULL;
2692
 
#endif
2693
 
 
2694
 
        if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2695
 
        c->lumMmx2Filter=NULL;
2696
 
        if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2697
 
        c->chrMmx2Filter=NULL;
2698
 
        if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2699
 
        c->lumMmx2FilterPos=NULL;
2700
 
        if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2701
 
        c->chrMmx2FilterPos=NULL;
2702
 
        if(c->yuvTable) free(c->yuvTable);
2703
 
        c->yuvTable=NULL;
2704
 
 
2705
 
        free(c);
2706
 
}
2707