~ubuntu-branches/ubuntu/vivid/emscripten/vivid

« back to all changes in this revision

Viewing changes to tests/bullet/src/BulletCollision/NarrowPhaseCollision/btGjkConvexCast.cpp

  • Committer: Package Import Robot
  • Author(s): Sylvestre Ledru
  • Date: 2013-05-02 13:11:51 UTC
  • Revision ID: package-import@ubuntu.com-20130502131151-q8dvteqr1ef2x7xz
Tags: upstream-1.4.1~20130504~adb56cb
ImportĀ upstreamĀ versionĀ 1.4.1~20130504~adb56cb

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
Bullet Continuous Collision Detection and Physics Library
 
3
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 
4
 
 
5
This software is provided 'as-is', without any express or implied warranty.
 
6
In no event will the authors be held liable for any damages arising from the use of this software.
 
7
Permission is granted to anyone to use this software for any purpose, 
 
8
including commercial applications, and to alter it and redistribute it freely, 
 
9
subject to the following restrictions:
 
10
 
 
11
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 
12
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 
13
3. This notice may not be removed or altered from any source distribution.
 
14
*/
 
15
 
 
16
 
 
17
 
 
18
#include "btGjkConvexCast.h"
 
19
#include "BulletCollision/CollisionShapes/btSphereShape.h"
 
20
#include "btGjkPairDetector.h"
 
21
#include "btPointCollector.h"
 
22
#include "LinearMath/btTransformUtil.h"
 
23
 
 
24
#ifdef BT_USE_DOUBLE_PRECISION
 
25
#define MAX_ITERATIONS 64
 
26
#else
 
27
#define MAX_ITERATIONS 32
 
28
#endif
 
29
 
 
30
btGjkConvexCast::btGjkConvexCast(const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
 
31
:m_simplexSolver(simplexSolver),
 
32
m_convexA(convexA),
 
33
m_convexB(convexB)
 
34
{
 
35
}
 
36
 
 
37
bool    btGjkConvexCast::calcTimeOfImpact(
 
38
                                        const btTransform& fromA,
 
39
                                        const btTransform& toA,
 
40
                                        const btTransform& fromB,
 
41
                                        const btTransform& toB,
 
42
                                        CastResult& result)
 
43
{
 
44
 
 
45
 
 
46
        m_simplexSolver->reset();
 
47
 
 
48
        /// compute linear velocity for this interval, to interpolate
 
49
        //assume no rotation/angular velocity, assert here?
 
50
        btVector3 linVelA,linVelB;
 
51
        linVelA = toA.getOrigin()-fromA.getOrigin();
 
52
        linVelB = toB.getOrigin()-fromB.getOrigin();
 
53
 
 
54
        btScalar radius = btScalar(0.001);
 
55
        btScalar lambda = btScalar(0.);
 
56
        btVector3 v(1,0,0);
 
57
 
 
58
        int maxIter = MAX_ITERATIONS;
 
59
 
 
60
        btVector3 n;
 
61
        n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 
62
        bool hasResult = false;
 
63
        btVector3 c;
 
64
        btVector3 r = (linVelA-linVelB);
 
65
 
 
66
        btScalar lastLambda = lambda;
 
67
        //btScalar epsilon = btScalar(0.001);
 
68
 
 
69
        int numIter = 0;
 
70
        //first solution, using GJK
 
71
 
 
72
 
 
73
        btTransform identityTrans;
 
74
        identityTrans.setIdentity();
 
75
 
 
76
 
 
77
//      result.drawCoordSystem(sphereTr);
 
78
 
 
79
        btPointCollector        pointCollector;
 
80
 
 
81
                
 
82
        btGjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,0);//m_penetrationDepthSolver);               
 
83
        btGjkPairDetector::ClosestPointInput input;
 
84
 
 
85
        //we don't use margins during CCD
 
86
        //      gjk.setIgnoreMargin(true);
 
87
 
 
88
        input.m_transformA = fromA;
 
89
        input.m_transformB = fromB;
 
90
        gjk.getClosestPoints(input,pointCollector,0);
 
91
 
 
92
        hasResult = pointCollector.m_hasResult;
 
93
        c = pointCollector.m_pointInWorld;
 
94
 
 
95
        if (hasResult)
 
96
        {
 
97
                btScalar dist;
 
98
                dist = pointCollector.m_distance;
 
99
                n = pointCollector.m_normalOnBInWorld;
 
100
 
 
101
        
 
102
 
 
103
                //not close enough
 
104
                while (dist > radius)
 
105
                {
 
106
                        numIter++;
 
107
                        if (numIter > maxIter)
 
108
                        {
 
109
                                return false; //todo: report a failure
 
110
                        }
 
111
                        btScalar dLambda = btScalar(0.);
 
112
 
 
113
                        btScalar projectedLinearVelocity = r.dot(n);
 
114
                        
 
115
                        dLambda = dist / (projectedLinearVelocity);
 
116
 
 
117
                        lambda = lambda - dLambda;
 
118
 
 
119
                        if (lambda > btScalar(1.))
 
120
                                return false;
 
121
 
 
122
                        if (lambda < btScalar(0.))
 
123
                                return false;
 
124
 
 
125
                        //todo: next check with relative epsilon
 
126
                        if (lambda <= lastLambda)
 
127
                        {
 
128
                                return false;
 
129
                                //n.setValue(0,0,0);
 
130
                                break;
 
131
                        }
 
132
                        lastLambda = lambda;
 
133
 
 
134
                        //interpolate to next lambda
 
135
                        result.DebugDraw( lambda );
 
136
                        input.m_transformA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
 
137
                        input.m_transformB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
 
138
                        
 
139
                        gjk.getClosestPoints(input,pointCollector,0);
 
140
                        if (pointCollector.m_hasResult)
 
141
                        {
 
142
                                if (pointCollector.m_distance < btScalar(0.))
 
143
                                {
 
144
                                        result.m_fraction = lastLambda;
 
145
                                        n = pointCollector.m_normalOnBInWorld;
 
146
                                        result.m_normal=n;
 
147
                                        result.m_hitPoint = pointCollector.m_pointInWorld;
 
148
                                        return true;
 
149
                                }
 
150
                                c = pointCollector.m_pointInWorld;              
 
151
                                n = pointCollector.m_normalOnBInWorld;
 
152
                                dist = pointCollector.m_distance;
 
153
                        } else
 
154
                        {
 
155
                                //??
 
156
                                return false;
 
157
                        }
 
158
 
 
159
                }
 
160
 
 
161
                //is n normalized?
 
162
                //don't report time of impact for motion away from the contact normal (or causes minor penetration)
 
163
                if (n.dot(r)>=-result.m_allowedPenetration)
 
164
                        return false;
 
165
 
 
166
                result.m_fraction = lambda;
 
167
                result.m_normal = n;
 
168
                result.m_hitPoint = c;
 
169
                return true;
 
170
        }
 
171
 
 
172
        return false;
 
173
 
 
174
 
 
175
}
 
176