~ubuntu-branches/debian/sid/lammps/sid

« back to all changes in this revision

Viewing changes to doc/fix_tfmc.html

  • Committer: Package Import Robot
  • Author(s): Anton Gladky
  • Date: 2015-04-29 23:44:49 UTC
  • mfrom: (5.1.3 experimental)
  • Revision ID: package-import@ubuntu.com-20150429234449-mbhy9utku6hp6oq8
Tags: 0~20150313.gitfa668e1-1
Upload into unstable.

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
<HTML>
 
2
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 
3
</CENTER>
 
4
 
 
5
 
 
6
 
 
7
 
 
8
 
 
9
 
 
10
<HR>
 
11
 
 
12
<H3>fix tfmc command 
 
13
</H3>
 
14
<P><B>Syntax:</B>
 
15
</P>
 
16
<PRE>fix ID group-ID tfmc Delta Temp seed keyword value 
 
17
</PRE>
 
18
<UL><LI>ID, group-ID are documented in <A HREF = "fix.html">fix</A> command 
 
19
 
 
20
<LI>tfmc = style name of this fix command 
 
21
 
 
22
<LI>Delta = maximal displacement length (distance units) 
 
23
 
 
24
<LI>Temp = imposed temperature of the system 
 
25
 
 
26
<LI>seed = random number seed (positive integer) 
 
27
 
 
28
<LI>zero or more keyword/arg pairs may be appended 
 
29
 
 
30
<LI>keyword = <I>com</I> or <I>rot</I> 
 
31
 
 
32
<PRE>  <I>com</I> args = xflag yflag zflag
 
33
    xflag,yflag,zflag = 0/1 to exclude/include each dimension
 
34
  <I>rot</I> args = none 
 
35
</PRE>
 
36
 
 
37
</UL>
 
38
<P><B>Examples:</B>
 
39
</P>
 
40
<PRE>fix 1 all tfmc 0.1 1000.0 159345
 
41
fix 1 all tfmc 0.05 600.0 658943 com 1 1 0 
 
42
fix 1 all tfmc 0.1 750.0 387068 com 1 1 1 rot 
 
43
</PRE>
 
44
<P><B>Description:</B>
 
45
</P>
 
46
<P>Perform uniform-acceptance force-bias Monte Carlo (fbMC) simulations,
 
47
using the time-stamped force-bias Monte Carlo (tfMC) algorithm
 
48
described in <A HREF = "#Mees">(Mees)</A> and <A HREF = "#Bal">(Bal)</A>.
 
49
</P>
 
50
<P>One successful use case of force-bias Monte Carlo methods is that they
 
51
can be used to extend the time scale of atomistic simulations, in
 
52
particular when long time scale relaxation effects must be considered;
 
53
some interesting examples are given in the review by <A HREF = "#Neyts">(Neyts)</A>.
 
54
An example of a typical use case would be the modelling of chemical
 
55
vapour deposition (CVD) processes on a surface, in which impacts by
 
56
gas-phase species can be performed using MD, but subsequent relaxation
 
57
of the surface is too slow to be done using MD only. Using tfMC can
 
58
allow for a much faster relaxation of the surface, so that higher
 
59
fluxes can be used, effectively extending the time scale of the
 
60
simulation. (Such an alternating simulation approach could be set up
 
61
using a <A HREF = "jump.html">loop</A>.)
 
62
</P>
 
63
<P>The initial version of tfMC algorithm in <A HREF = "#Mees">(Mees)</A> contained an
 
64
estimation of the effective time scale of such a simulation, but it
 
65
was later shown that the speed-up one can gain from a tfMC simulation
 
66
is system- and process-dependent, ranging from none to several orders
 
67
of magnitude. In general, solid-state processes such as
 
68
(re)crystallisation or growth can be accelerated by up to two or three
 
69
orders of magnitude, whereas diffusion in the liquid phase is not
 
70
accelerated at all. The observed pseudodynamics when using the tfMC
 
71
method is not the actual dynamics one would obtain using MD, but the
 
72
relative importance of processes can match the actual relative
 
73
dynamics of the system quite well, provided <I>Delta</I> is chosen with
 
74
care. Thus, the system's equilibrium is reached faster than in MD,
 
75
along a path that is generally roughly similar to a typical MD
 
76
simulation (but not necessarily so). See <A HREF = "#Bal">(Bal)</A> for details.
 
77
</P>
 
78
<P>Each step, all atoms in the selected group are displaced using the
 
79
stochastic tfMC algorithm, which is designed to sample the canonical
 
80
(NVT) ensemble at the temperature <I>Temp</I>. Although tfMC is a Monte
 
81
Carlo algorithm and thus strictly speaking does not perform time
 
82
integration, it is similar in the sense that it uses the forces on all
 
83
atoms in order to update their positions. Therefore, it is implemented
 
84
as a time integration fix, and no other fixes of this type (such as
 
85
<A HREF = "fix_nve.html">fix nve</A>) should be used at the same time. Because
 
86
velocities do not play a role in this kind of Monte Carlo simulations,
 
87
instantaneous temperatures as calculated by <A HREF = "compute_temp.html">temperature
 
88
computes</A> or <A HREF = "thermo_style.html">thermodynamic
 
89
output</A> have no meaning: the only relevant
 
90
temperature is the sampling temperature <I>Temp</I>.  Similarly, performing
 
91
tfMC simulations does not require setting a <A HREF = "timestep.html">timestep</A>
 
92
and the <A HREF = "thermo_style.html">simulated time</A> as calculated by LAMMPS is
 
93
meaningless.
 
94
</P>
 
95
<P>The critical parameter determining the success of a tfMC simulation is
 
96
<I>Delta</I>, the maximal displacement length of the lightest element in
 
97
the system: the larger it is, the longer the effective time scale of
 
98
the simulation will be (there is an approximately quadratic
 
99
dependence). However, <I>Delta</I> must also be chosen sufficiently small
 
100
in order to comply with detailed balance; in general values between 5
 
101
and 10 % of the nearest neighbor distance are found to be a good
 
102
choice. For a more extensive discussion with specific examples, please
 
103
refer to <A HREF = "#Bal">(Bal)</A>, which also describes how the code calculates
 
104
element-specific maximal displacements from <I>Delta</I>, based on the
 
105
fourth root of their mass.
 
106
</P>
 
107
<P>Because of the uncorrelated movements of the atoms, the center-of-mass
 
108
of the fix group will not necessarily be stationary, just like its
 
109
orientation. When the <I>com</I> keyword is used, all atom positions will
 
110
be shifted (after every tfMC iteration) in order to fix the position
 
111
of the center-of-mass along the included directions, by setting the
 
112
corresponding flag to 1. The <I>rot</I> keyword does the same for the
 
113
rotational component of the tfMC displacements after every iteration.
 
114
</P>
 
115
<P>IMPORTANT NOTE: the <I>com</I> and <I>rot</I> keywords should not be used if an
 
116
external force is acting on the specified fix group, along the
 
117
included directions. This can be either a true external force (e.g.
 
118
through <A HREF = "fix_wall.html">fix wall</A>) or forces due to the interaction
 
119
with atoms not included in the fix group. This is because in such
 
120
cases, translations or rotations of the fix group could be induced by
 
121
these external forces, and removing them will lead to a violation of
 
122
detailed balance.
 
123
</P>
 
124
<HR>
 
125
 
 
126
<P><B>Restart, fix_modify, output, run start/stop, minimize info:</B>
 
127
</P>
 
128
<P>No information about this fix is written to <A HREF = "restart.html">binary restart
 
129
files</A>.
 
130
</P>
 
131
<P>None of the <A HREF = "fix_modify.html">fix_modify</A> options are relevant to this
 
132
fix.
 
133
</P>
 
134
<P>This fix is not invoked during <A HREF = "minimize.html">energy minimization</A>.
 
135
</P>
 
136
<P><B>Restrictions:</B>
 
137
</P>
 
138
<P>This fix is part of the MC package.  It is only enabled if LAMMPS was
 
139
built with that package.  See the <A HREF = "Section_start.html#start_3">Making
 
140
LAMMPS</A> section for more info.
 
141
</P>
 
142
<P>This fix is not compatible with <A HREF = "fix_shake.html">fix shake</A>. 
 
143
</P>
 
144
<P><B>Related commands:</B>
 
145
</P>
 
146
<P><A HREF = "fix_gcmc.html">fix gcmc</A>, <A HREF = "fix_nh.html">fix nvt</A>
 
147
</P>
 
148
<P><B>Default:</B>
 
149
</P>
 
150
<P>The option default is com = 0 0 0
 
151
</P>
 
152
<HR>
 
153
 
 
154
<A NAME = "Bal"></A>
 
155
 
 
156
<P><B>(Bal)</B> K. M Bal and E. C. Neyts, J. Chem. Phys. 141, 204104 (2014).
 
157
</P>
 
158
<A NAME = "Mees"></A>
 
159
 
 
160
<P><B>(Mees)</B> M. J. Mees, G. Pourtois, E. C. Neyts, B. J. Thijsse, and
 
161
A. Stesmans, Phys. Rev. B 85, 134301 (2012).
 
162
</P>
 
163
<A NAME = "Neyts"></A>
 
164
 
 
165
<P><B>(Neyts)</B> E. C. Neyts and A. Bogaerts, Theor. Chem. Acc. 132, 1320
 
166
(2013).
 
167
</P>
 
168
</HTML>