~pmdj/ubuntu/trusty/qemu/2.9+applesmc+fadtv3

« back to all changes in this revision

Viewing changes to roms/ipxe/src/drivers/net/ath/ath5k/ath5k_eeprom.c

  • Committer: Phil Dennis-Jordan
  • Date: 2017-07-21 08:03:43 UTC
  • mfrom: (1.1.1)
  • Revision ID: phil@philjordan.eu-20170721080343-2yr2vdj7713czahv
New upstream release 2.9.0.

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
 
3
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
 
4
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
 
5
 *
 
6
 * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
 
7
 *
 
8
 * Permission to use, copy, modify, and distribute this software for any
 
9
 * purpose with or without fee is hereby granted, provided that the above
 
10
 * copyright notice and this permission notice appear in all copies.
 
11
 *
 
12
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 
13
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 
14
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 
15
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 
16
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 
17
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 
18
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 
19
 *
 
20
 */
 
21
 
 
22
FILE_LICENCE ( MIT );
 
23
 
 
24
/*************************************\
 
25
* EEPROM access functions and helpers *
 
26
\*************************************/
 
27
 
 
28
#include <unistd.h>
 
29
#include <stdlib.h>
 
30
 
 
31
#include "ath5k.h"
 
32
#include "reg.h"
 
33
#include "base.h"
 
34
 
 
35
/*
 
36
 * Read from eeprom
 
37
 */
 
38
static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
 
39
{
 
40
        u32 status, timeout;
 
41
 
 
42
        /*
 
43
         * Initialize EEPROM access
 
44
         */
 
45
        if (ah->ah_version == AR5K_AR5210) {
 
46
                AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
 
47
                (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
 
48
        } else {
 
49
                ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
 
50
                AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
 
51
                                AR5K_EEPROM_CMD_READ);
 
52
        }
 
53
 
 
54
        for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
 
55
                status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
 
56
                if (status & AR5K_EEPROM_STAT_RDDONE) {
 
57
                        if (status & AR5K_EEPROM_STAT_RDERR)
 
58
                                return -EIO;
 
59
                        *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
 
60
                                        0xffff);
 
61
                        return 0;
 
62
                }
 
63
                udelay(15);
 
64
        }
 
65
 
 
66
        return -ETIMEDOUT;
 
67
}
 
68
 
 
69
/*
 
70
 * Translate binary channel representation in EEPROM to frequency
 
71
 */
 
72
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
 
73
                                 unsigned int mode)
 
74
{
 
75
        u16 val;
 
76
 
 
77
        if (bin == AR5K_EEPROM_CHANNEL_DIS)
 
78
                return bin;
 
79
 
 
80
        if (mode == AR5K_EEPROM_MODE_11A) {
 
81
                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
 
82
                        val = (5 * bin) + 4800;
 
83
                else
 
84
                        val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
 
85
                                (bin * 10) + 5100;
 
86
        } else {
 
87
                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
 
88
                        val = bin + 2300;
 
89
                else
 
90
                        val = bin + 2400;
 
91
        }
 
92
 
 
93
        return val;
 
94
}
 
95
 
 
96
/*
 
97
 * Initialize eeprom & capabilities structs
 
98
 */
 
99
static int
 
100
ath5k_eeprom_init_header(struct ath5k_hw *ah)
 
101
{
 
102
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
103
        int ret;
 
104
        u16 val;
 
105
 
 
106
        /*
 
107
         * Read values from EEPROM and store them in the capability structure
 
108
         */
 
109
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
 
110
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
 
111
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
 
112
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
 
113
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
 
114
 
 
115
        /* Return if we have an old EEPROM */
 
116
        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
 
117
                return 0;
 
118
 
 
119
        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 
120
            ee_ant_gain);
 
121
 
 
122
        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 
123
                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 
124
                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 
125
 
 
126
                /* XXX: Don't know which versions include these two */
 
127
                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 
128
 
 
129
                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 
130
                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 
131
 
 
132
                if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 
133
                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 
134
                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 
135
                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 
136
                }
 
137
        }
 
138
 
 
139
        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 
140
                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 
141
                ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 
142
                ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 
143
 
 
144
                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 
145
                ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 
146
                ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 
147
        }
 
148
 
 
149
        AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 
150
 
 
151
        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 
152
                ee->ee_is_hb63 = 1;
 
153
        else
 
154
                ee->ee_is_hb63 = 0;
 
155
 
 
156
        AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 
157
        ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 
158
        ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
 
159
 
 
160
        return 0;
 
161
}
 
162
 
 
163
 
 
164
/*
 
165
 * Read antenna infos from eeprom
 
166
 */
 
167
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 
168
                unsigned int mode)
 
169
{
 
170
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
171
        u32 o = *offset;
 
172
        u16 val;
 
173
        int ret, i = 0;
 
174
 
 
175
        AR5K_EEPROM_READ(o++, val);
 
176
        ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
 
177
        ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
 
178
        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 
179
 
 
180
        AR5K_EEPROM_READ(o++, val);
 
181
        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 
182
        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 
183
        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 
184
 
 
185
        AR5K_EEPROM_READ(o++, val);
 
186
        ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
 
187
        ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
 
188
        ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
 
189
 
 
190
        AR5K_EEPROM_READ(o++, val);
 
191
        ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
 
192
        ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
 
193
        ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
 
194
        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 
195
 
 
196
        AR5K_EEPROM_READ(o++, val);
 
197
        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 
198
        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 
199
        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 
200
 
 
201
        /* Get antenna modes */
 
202
        ah->ah_antenna[mode][0] =
 
203
            (ee->ee_ant_control[mode][0] << 4);
 
204
        ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
 
205
             ee->ee_ant_control[mode][1]        |
 
206
            (ee->ee_ant_control[mode][2] << 6)  |
 
207
            (ee->ee_ant_control[mode][3] << 12) |
 
208
            (ee->ee_ant_control[mode][4] << 18) |
 
209
            (ee->ee_ant_control[mode][5] << 24);
 
210
        ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
 
211
             ee->ee_ant_control[mode][6]        |
 
212
            (ee->ee_ant_control[mode][7] << 6)  |
 
213
            (ee->ee_ant_control[mode][8] << 12) |
 
214
            (ee->ee_ant_control[mode][9] << 18) |
 
215
            (ee->ee_ant_control[mode][10] << 24);
 
216
 
 
217
        /* return new offset */
 
218
        *offset = o;
 
219
 
 
220
        return 0;
 
221
}
 
222
 
 
223
/*
 
224
 * Read supported modes and some mode-specific calibration data
 
225
 * from eeprom
 
226
 */
 
227
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 
228
                unsigned int mode)
 
229
{
 
230
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
231
        u32 o = *offset;
 
232
        u16 val;
 
233
        int ret;
 
234
 
 
235
        ee->ee_n_piers[mode] = 0;
 
236
        AR5K_EEPROM_READ(o++, val);
 
237
        ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
 
238
        switch(mode) {
 
239
        case AR5K_EEPROM_MODE_11A:
 
240
                ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
 
241
                ee->ee_db[mode][3]      = (val >> 2) & 0x7;
 
242
                ee->ee_ob[mode][2]      = (val << 1) & 0x7;
 
243
 
 
244
                AR5K_EEPROM_READ(o++, val);
 
245
                ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
 
246
                ee->ee_db[mode][2]      = (val >> 12) & 0x7;
 
247
                ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
 
248
                ee->ee_db[mode][1]      = (val >> 6) & 0x7;
 
249
                ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
 
250
                ee->ee_db[mode][0]      = val & 0x7;
 
251
                break;
 
252
        case AR5K_EEPROM_MODE_11G:
 
253
        case AR5K_EEPROM_MODE_11B:
 
254
                ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
 
255
                ee->ee_db[mode][1]      = val & 0x7;
 
256
                break;
 
257
        }
 
258
 
 
259
        AR5K_EEPROM_READ(o++, val);
 
260
        ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
 
261
        ee->ee_thr_62[mode]             = val & 0xff;
 
262
 
 
263
        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 
264
                ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 
265
 
 
266
        AR5K_EEPROM_READ(o++, val);
 
267
        ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
 
268
        ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
 
269
 
 
270
        AR5K_EEPROM_READ(o++, val);
 
271
        ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
 
272
 
 
273
        if ((val & 0xff) & 0x80)
 
274
                ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 
275
        else
 
276
                ee->ee_noise_floor_thr[mode] = val & 0xff;
 
277
 
 
278
        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 
279
                ee->ee_noise_floor_thr[mode] =
 
280
                    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 
281
 
 
282
        AR5K_EEPROM_READ(o++, val);
 
283
        ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
 
284
        ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
 
285
        ee->ee_xpd[mode]                = val & 0x1;
 
286
 
 
287
        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
 
288
                ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 
289
 
 
290
        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 
291
                AR5K_EEPROM_READ(o++, val);
 
292
                ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 
293
 
 
294
                if (mode == AR5K_EEPROM_MODE_11A)
 
295
                        ee->ee_xr_power[mode] = val & 0x3f;
 
296
                else {
 
297
                        ee->ee_ob[mode][0] = val & 0x7;
 
298
                        ee->ee_db[mode][0] = (val >> 3) & 0x7;
 
299
                }
 
300
        }
 
301
 
 
302
        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 
303
                ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 
304
                ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 
305
        } else {
 
306
                ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 
307
 
 
308
                AR5K_EEPROM_READ(o++, val);
 
309
                ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 
310
 
 
311
                if (mode == AR5K_EEPROM_MODE_11G) {
 
312
                        ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 
313
                        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 
314
                                ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 
315
                }
 
316
        }
 
317
 
 
318
        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 
319
                        mode == AR5K_EEPROM_MODE_11A) {
 
320
                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 
321
                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 
322
        }
 
323
 
 
324
        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 
325
                goto done;
 
326
 
 
327
        /* Note: >= v5 have bg freq piers on another location
 
328
         * so these freq piers are ignored for >= v5 (should be 0xff
 
329
         * anyway) */
 
330
        switch(mode) {
 
331
        case AR5K_EEPROM_MODE_11A:
 
332
                if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 
333
                        break;
 
334
 
 
335
                AR5K_EEPROM_READ(o++, val);
 
336
                ee->ee_margin_tx_rx[mode] = val & 0x3f;
 
337
                break;
 
338
        case AR5K_EEPROM_MODE_11B:
 
339
                AR5K_EEPROM_READ(o++, val);
 
340
 
 
341
                ee->ee_pwr_cal_b[0].freq =
 
342
                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 
343
                if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 
344
                        ee->ee_n_piers[mode]++;
 
345
 
 
346
                ee->ee_pwr_cal_b[1].freq =
 
347
                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 
348
                if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 
349
                        ee->ee_n_piers[mode]++;
 
350
 
 
351
                AR5K_EEPROM_READ(o++, val);
 
352
                ee->ee_pwr_cal_b[2].freq =
 
353
                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 
354
                if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 
355
                        ee->ee_n_piers[mode]++;
 
356
 
 
357
                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 
358
                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 
359
                break;
 
360
        case AR5K_EEPROM_MODE_11G:
 
361
                AR5K_EEPROM_READ(o++, val);
 
362
 
 
363
                ee->ee_pwr_cal_g[0].freq =
 
364
                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 
365
                if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 
366
                        ee->ee_n_piers[mode]++;
 
367
 
 
368
                ee->ee_pwr_cal_g[1].freq =
 
369
                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 
370
                if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 
371
                        ee->ee_n_piers[mode]++;
 
372
 
 
373
                AR5K_EEPROM_READ(o++, val);
 
374
                ee->ee_turbo_max_power[mode] = val & 0x7f;
 
375
                ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 
376
 
 
377
                AR5K_EEPROM_READ(o++, val);
 
378
                ee->ee_pwr_cal_g[2].freq =
 
379
                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 
380
                if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 
381
                        ee->ee_n_piers[mode]++;
 
382
 
 
383
                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 
384
                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 
385
 
 
386
                AR5K_EEPROM_READ(o++, val);
 
387
                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 
388
                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 
389
 
 
390
                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 
391
                        AR5K_EEPROM_READ(o++, val);
 
392
                        ee->ee_cck_ofdm_gain_delta = val & 0xff;
 
393
                }
 
394
                break;
 
395
        }
 
396
 
 
397
done:
 
398
        /* return new offset */
 
399
        *offset = o;
 
400
 
 
401
        return 0;
 
402
}
 
403
 
 
404
/*
 
405
 * Read turbo mode information on newer EEPROM versions
 
406
 */
 
407
static int
 
408
ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
 
409
                              u32 *offset, unsigned int mode)
 
410
{
 
411
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
412
        u32 o = *offset;
 
413
        u16 val;
 
414
        int ret;
 
415
 
 
416
        if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 
417
                return 0;
 
418
 
 
419
        switch (mode){
 
420
        case AR5K_EEPROM_MODE_11A:
 
421
                ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 
422
 
 
423
                ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 
424
                AR5K_EEPROM_READ(o++, val);
 
425
                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 
426
                ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 
427
 
 
428
                ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 
429
                AR5K_EEPROM_READ(o++, val);
 
430
                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 
431
                ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 
432
 
 
433
                if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
 
434
                        ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 
435
                break;
 
436
        case AR5K_EEPROM_MODE_11G:
 
437
                ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 
438
 
 
439
                ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 
440
                AR5K_EEPROM_READ(o++, val);
 
441
                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 
442
                ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 
443
 
 
444
                ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 
445
                AR5K_EEPROM_READ(o++, val);
 
446
                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 
447
                ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 
448
                break;
 
449
        }
 
450
 
 
451
        /* return new offset */
 
452
        *offset = o;
 
453
 
 
454
        return 0;
 
455
}
 
456
 
 
457
/* Read mode-specific data (except power calibration data) */
 
458
static int
 
459
ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 
460
{
 
461
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
462
        u32 mode_offset[3];
 
463
        unsigned int mode;
 
464
        u32 offset;
 
465
        int ret;
 
466
 
 
467
        /*
 
468
         * Get values for all modes
 
469
         */
 
470
        mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 
471
        mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 
472
        mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 
473
 
 
474
        ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 
475
                AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 
476
 
 
477
        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 
478
                offset = mode_offset[mode];
 
479
 
 
480
                ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 
481
                if (ret)
 
482
                        return ret;
 
483
 
 
484
                ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 
485
                if (ret)
 
486
                        return ret;
 
487
 
 
488
                ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
 
489
                if (ret)
 
490
                        return ret;
 
491
        }
 
492
 
 
493
        /* override for older eeprom versions for better performance */
 
494
        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 
495
                ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 
496
                ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 
497
                ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 
498
        }
 
499
 
 
500
        return 0;
 
501
}
 
502
 
 
503
/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 
504
 * frequency mask) */
 
505
static inline int
 
506
ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 
507
                        struct ath5k_chan_pcal_info *pc, unsigned int mode)
 
508
{
 
509
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
510
        int o = *offset;
 
511
        int i = 0;
 
512
        u8 freq1, freq2;
 
513
        int ret;
 
514
        u16 val;
 
515
 
 
516
        ee->ee_n_piers[mode] = 0;
 
517
        while(i < max) {
 
518
                AR5K_EEPROM_READ(o++, val);
 
519
 
 
520
                freq1 = val & 0xff;
 
521
                if (!freq1)
 
522
                        break;
 
523
 
 
524
                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 
525
                                freq1, mode);
 
526
                ee->ee_n_piers[mode]++;
 
527
 
 
528
                freq2 = (val >> 8) & 0xff;
 
529
                if (!freq2)
 
530
                        break;
 
531
 
 
532
                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 
533
                                freq2, mode);
 
534
                ee->ee_n_piers[mode]++;
 
535
        }
 
536
 
 
537
        /* return new offset */
 
538
        *offset = o;
 
539
 
 
540
        return 0;
 
541
}
 
542
 
 
543
/* Read frequency piers for 802.11a */
 
544
static int
 
545
ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 
546
{
 
547
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
548
        struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 
549
        int i, ret;
 
550
        u16 val;
 
551
        u8 mask;
 
552
 
 
553
        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 
554
                ath5k_eeprom_read_freq_list(ah, &offset,
 
555
                        AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 
556
                        AR5K_EEPROM_MODE_11A);
 
557
        } else {
 
558
                mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 
559
 
 
560
                AR5K_EEPROM_READ(offset++, val);
 
561
                pcal[0].freq  = (val >> 9) & mask;
 
562
                pcal[1].freq  = (val >> 2) & mask;
 
563
                pcal[2].freq  = (val << 5) & mask;
 
564
 
 
565
                AR5K_EEPROM_READ(offset++, val);
 
566
                pcal[2].freq |= (val >> 11) & 0x1f;
 
567
                pcal[3].freq  = (val >> 4) & mask;
 
568
                pcal[4].freq  = (val << 3) & mask;
 
569
 
 
570
                AR5K_EEPROM_READ(offset++, val);
 
571
                pcal[4].freq |= (val >> 13) & 0x7;
 
572
                pcal[5].freq  = (val >> 6) & mask;
 
573
                pcal[6].freq  = (val << 1) & mask;
 
574
 
 
575
                AR5K_EEPROM_READ(offset++, val);
 
576
                pcal[6].freq |= (val >> 15) & 0x1;
 
577
                pcal[7].freq  = (val >> 8) & mask;
 
578
                pcal[8].freq  = (val >> 1) & mask;
 
579
                pcal[9].freq  = (val << 6) & mask;
 
580
 
 
581
                AR5K_EEPROM_READ(offset++, val);
 
582
                pcal[9].freq |= (val >> 10) & 0x3f;
 
583
 
 
584
                /* Fixed number of piers */
 
585
                ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 
586
 
 
587
                for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 
588
                        pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 
589
                                pcal[i].freq, AR5K_EEPROM_MODE_11A);
 
590
                }
 
591
        }
 
592
 
 
593
        return 0;
 
594
}
 
595
 
 
596
/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 
597
static inline int
 
598
ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 
599
{
 
600
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
601
        struct ath5k_chan_pcal_info *pcal;
 
602
 
 
603
        switch(mode) {
 
604
        case AR5K_EEPROM_MODE_11B:
 
605
                pcal = ee->ee_pwr_cal_b;
 
606
                break;
 
607
        case AR5K_EEPROM_MODE_11G:
 
608
                pcal = ee->ee_pwr_cal_g;
 
609
                break;
 
610
        default:
 
611
                return -EINVAL;
 
612
        }
 
613
 
 
614
        ath5k_eeprom_read_freq_list(ah, &offset,
 
615
                AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 
616
                mode);
 
617
 
 
618
        return 0;
 
619
}
 
620
 
 
621
/*
 
622
 * Read power calibration for RF5111 chips
 
623
 *
 
624
 * For RF5111 we have an XPD -eXternal Power Detector- curve
 
625
 * for each calibrated channel. Each curve has 0,5dB Power steps
 
626
 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 
627
 * exponential function. To recreate the curve we read 11 points
 
628
 * here and interpolate later.
 
629
 */
 
630
 
 
631
/* Used to match PCDAC steps with power values on RF5111 chips
 
632
 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 
633
 * steps that match with the power values we read from eeprom. On
 
634
 * older eeprom versions (< 3.2) these steps are equaly spaced at
 
635
 * 10% of the pcdac curve -until the curve reaches it's maximum-
 
636
 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 
637
 * these 11 steps are spaced in a different way. This function returns
 
638
 * the pcdac steps based on eeprom version and curve min/max so that we
 
639
 * can have pcdac/pwr points.
 
640
 */
 
641
static inline void
 
642
ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 
643
{
 
644
        static const u16 intercepts3[] =
 
645
                { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
 
646
        static const u16 intercepts3_2[] =
 
647
                { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
 
648
        const u16 *ip;
 
649
        unsigned i;
 
650
 
 
651
        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 
652
                ip = intercepts3_2;
 
653
        else
 
654
                ip = intercepts3;
 
655
 
 
656
        for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 
657
                vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 
658
}
 
659
 
 
660
/* Convert RF5111 specific data to generic raw data
 
661
 * used by interpolation code */
 
662
static int
 
663
ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 
664
                                struct ath5k_chan_pcal_info *chinfo)
 
665
{
 
666
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
667
        struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 
668
        struct ath5k_pdgain_info *pd;
 
669
        u8 pier, point, idx;
 
670
        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 
671
 
 
672
        /* Fill raw data for each calibration pier */
 
673
        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 
674
 
 
675
                pcinfo = &chinfo[pier].rf5111_info;
 
676
 
 
677
                /* Allocate pd_curves for this cal pier */
 
678
                chinfo[pier].pd_curves =
 
679
                        calloc(AR5K_EEPROM_N_PD_CURVES,
 
680
                               sizeof(struct ath5k_pdgain_info));
 
681
 
 
682
                if (!chinfo[pier].pd_curves)
 
683
                        return -ENOMEM;
 
684
 
 
685
                /* Only one curve for RF5111
 
686
                 * find out which one and place
 
687
                 * in in pd_curves.
 
688
                 * Note: ee_x_gain is reversed here */
 
689
                for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 
690
 
 
691
                        if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 
692
                                pdgain_idx[0] = idx;
 
693
                                break;
 
694
                        }
 
695
                }
 
696
 
 
697
                ee->ee_pd_gains[mode] = 1;
 
698
 
 
699
                pd = &chinfo[pier].pd_curves[idx];
 
700
 
 
701
                pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 
702
 
 
703
                /* Allocate pd points for this curve */
 
704
                pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
 
705
                if (!pd->pd_step)
 
706
                        return -ENOMEM;
 
707
 
 
708
                pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
 
709
                if (!pd->pd_pwr)
 
710
                        return -ENOMEM;
 
711
 
 
712
                /* Fill raw dataset
 
713
                 * (convert power to 0.25dB units
 
714
                 * for RF5112 combatibility) */
 
715
                for (point = 0; point < pd->pd_points; point++) {
 
716
 
 
717
                        /* Absolute values */
 
718
                        pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 
719
 
 
720
                        /* Already sorted */
 
721
                        pd->pd_step[point] = pcinfo->pcdac[point];
 
722
                }
 
723
 
 
724
                /* Set min/max pwr */
 
725
                chinfo[pier].min_pwr = pd->pd_pwr[0];
 
726
                chinfo[pier].max_pwr = pd->pd_pwr[10];
 
727
 
 
728
        }
 
729
 
 
730
        return 0;
 
731
}
 
732
 
 
733
/* Parse EEPROM data */
 
734
static int
 
735
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 
736
{
 
737
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
738
        struct ath5k_chan_pcal_info *pcal;
 
739
        int offset, ret;
 
740
        int i;
 
741
        u16 val;
 
742
 
 
743
        offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 
744
        switch(mode) {
 
745
        case AR5K_EEPROM_MODE_11A:
 
746
                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 
747
                        return 0;
 
748
 
 
749
                ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 
750
                        offset + AR5K_EEPROM_GROUP1_OFFSET);
 
751
                if (ret < 0)
 
752
                        return ret;
 
753
 
 
754
                offset += AR5K_EEPROM_GROUP2_OFFSET;
 
755
                pcal = ee->ee_pwr_cal_a;
 
756
                break;
 
757
        case AR5K_EEPROM_MODE_11B:
 
758
                if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 
759
                    !AR5K_EEPROM_HDR_11G(ee->ee_header))
 
760
                        return 0;
 
761
 
 
762
                pcal = ee->ee_pwr_cal_b;
 
763
                offset += AR5K_EEPROM_GROUP3_OFFSET;
 
764
 
 
765
                /* fixed piers */
 
766
                pcal[0].freq = 2412;
 
767
                pcal[1].freq = 2447;
 
768
                pcal[2].freq = 2484;
 
769
                ee->ee_n_piers[mode] = 3;
 
770
                break;
 
771
        case AR5K_EEPROM_MODE_11G:
 
772
                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 
773
                        return 0;
 
774
 
 
775
                pcal = ee->ee_pwr_cal_g;
 
776
                offset += AR5K_EEPROM_GROUP4_OFFSET;
 
777
 
 
778
                /* fixed piers */
 
779
                pcal[0].freq = 2312;
 
780
                pcal[1].freq = 2412;
 
781
                pcal[2].freq = 2484;
 
782
                ee->ee_n_piers[mode] = 3;
 
783
                break;
 
784
        default:
 
785
                return -EINVAL;
 
786
        }
 
787
 
 
788
        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 
789
                struct ath5k_chan_pcal_info_rf5111 *cdata =
 
790
                        &pcal[i].rf5111_info;
 
791
 
 
792
                AR5K_EEPROM_READ(offset++, val);
 
793
                cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 
794
                cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 
795
                cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 
796
 
 
797
                AR5K_EEPROM_READ(offset++, val);
 
798
                cdata->pwr[0] |= ((val >> 14) & 0x3);
 
799
                cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 
800
                cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 
801
                cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 
802
 
 
803
                AR5K_EEPROM_READ(offset++, val);
 
804
                cdata->pwr[3] |= ((val >> 12) & 0xf);
 
805
                cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 
806
                cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 
807
 
 
808
                AR5K_EEPROM_READ(offset++, val);
 
809
                cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 
810
                cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 
811
                cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 
812
 
 
813
                AR5K_EEPROM_READ(offset++, val);
 
814
                cdata->pwr[8] |= ((val >> 14) & 0x3);
 
815
                cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 
816
                cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 
817
 
 
818
                ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 
819
                        cdata->pcdac_max, cdata->pcdac);
 
820
        }
 
821
 
 
822
        return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 
823
}
 
824
 
 
825
 
 
826
/*
 
827
 * Read power calibration for RF5112 chips
 
828
 *
 
829
 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 
830
 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
 
831
 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 
832
 * power steps on x axis and PCDAC steps on y axis and looks like a
 
833
 * linear function. To recreate the curve and pass the power values
 
834
 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 
835
 * and 3 points for xpd 3 (higher gain -> lower power) here and
 
836
 * interpolate later.
 
837
 *
 
838
 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 
839
 */
 
840
 
 
841
/* Convert RF5112 specific data to generic raw data
 
842
 * used by interpolation code */
 
843
static int
 
844
ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 
845
                                struct ath5k_chan_pcal_info *chinfo)
 
846
{
 
847
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
848
        struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 
849
        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 
850
        unsigned int pier, pdg, point;
 
851
 
 
852
        /* Fill raw data for each calibration pier */
 
853
        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 
854
 
 
855
                pcinfo = &chinfo[pier].rf5112_info;
 
856
 
 
857
                /* Allocate pd_curves for this cal pier */
 
858
                chinfo[pier].pd_curves =
 
859
                                calloc(AR5K_EEPROM_N_PD_CURVES,
 
860
                                       sizeof(struct ath5k_pdgain_info));
 
861
 
 
862
                if (!chinfo[pier].pd_curves)
 
863
                        return -ENOMEM;
 
864
 
 
865
                /* Fill pd_curves */
 
866
                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 
867
 
 
868
                        u8 idx = pdgain_idx[pdg];
 
869
                        struct ath5k_pdgain_info *pd =
 
870
                                        &chinfo[pier].pd_curves[idx];
 
871
 
 
872
                        /* Lowest gain curve (max power) */
 
873
                        if (pdg == 0) {
 
874
                                /* One more point for better accuracy */
 
875
                                pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 
876
 
 
877
                                /* Allocate pd points for this curve */
 
878
                                pd->pd_step = calloc(pd->pd_points, sizeof(u8));
 
879
 
 
880
                                if (!pd->pd_step)
 
881
                                        return -ENOMEM;
 
882
 
 
883
                                pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
 
884
 
 
885
                                if (!pd->pd_pwr)
 
886
                                        return -ENOMEM;
 
887
 
 
888
 
 
889
                                /* Fill raw dataset
 
890
                                 * (all power levels are in 0.25dB units) */
 
891
                                pd->pd_step[0] = pcinfo->pcdac_x0[0];
 
892
                                pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 
893
 
 
894
                                for (point = 1; point < pd->pd_points;
 
895
                                point++) {
 
896
                                        /* Absolute values */
 
897
                                        pd->pd_pwr[point] =
 
898
                                                pcinfo->pwr_x0[point];
 
899
 
 
900
                                        /* Deltas */
 
901
                                        pd->pd_step[point] =
 
902
                                                pd->pd_step[point - 1] +
 
903
                                                pcinfo->pcdac_x0[point];
 
904
                                }
 
905
 
 
906
                                /* Set min power for this frequency */
 
907
                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 
908
 
 
909
                        /* Highest gain curve (min power) */
 
910
                        } else if (pdg == 1) {
 
911
 
 
912
                                pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 
913
 
 
914
                                /* Allocate pd points for this curve */
 
915
                                pd->pd_step = calloc(pd->pd_points, sizeof(u8));
 
916
 
 
917
                                if (!pd->pd_step)
 
918
                                        return -ENOMEM;
 
919
 
 
920
                                pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
 
921
 
 
922
                                if (!pd->pd_pwr)
 
923
                                        return -ENOMEM;
 
924
 
 
925
                                /* Fill raw dataset
 
926
                                 * (all power levels are in 0.25dB units) */
 
927
                                for (point = 0; point < pd->pd_points;
 
928
                                point++) {
 
929
                                        /* Absolute values */
 
930
                                        pd->pd_pwr[point] =
 
931
                                                pcinfo->pwr_x3[point];
 
932
 
 
933
                                        /* Fixed points */
 
934
                                        pd->pd_step[point] =
 
935
                                                pcinfo->pcdac_x3[point];
 
936
                                }
 
937
 
 
938
                                /* Since we have a higher gain curve
 
939
                                 * override min power */
 
940
                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 
941
                        }
 
942
                }
 
943
        }
 
944
 
 
945
        return 0;
 
946
}
 
947
 
 
948
/* Parse EEPROM data */
 
949
static int
 
950
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
 
951
{
 
952
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
953
        struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
 
954
        struct ath5k_chan_pcal_info *gen_chan_info;
 
955
        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 
956
        u32 offset;
 
957
        u8 i, c;
 
958
        u16 val;
 
959
        int ret;
 
960
        u8 pd_gains = 0;
 
961
 
 
962
        /* Count how many curves we have and
 
963
         * identify them (which one of the 4
 
964
         * available curves we have on each count).
 
965
         * Curves are stored from lower (x0) to
 
966
         * higher (x3) gain */
 
967
        for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
 
968
                /* ee_x_gain[mode] is x gain mask */
 
969
                if ((ee->ee_x_gain[mode] >> i) & 0x1)
 
970
                        pdgain_idx[pd_gains++] = i;
 
971
        }
 
972
        ee->ee_pd_gains[mode] = pd_gains;
 
973
 
 
974
        if (pd_gains == 0 || pd_gains > 2)
 
975
                return -EINVAL;
 
976
 
 
977
        switch (mode) {
 
978
        case AR5K_EEPROM_MODE_11A:
 
979
                /*
 
980
                 * Read 5GHz EEPROM channels
 
981
                 */
 
982
                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 
983
                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
 
984
 
 
985
                offset += AR5K_EEPROM_GROUP2_OFFSET;
 
986
                gen_chan_info = ee->ee_pwr_cal_a;
 
987
                break;
 
988
        case AR5K_EEPROM_MODE_11B:
 
989
                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 
990
                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
 
991
                        offset += AR5K_EEPROM_GROUP3_OFFSET;
 
992
 
 
993
                /* NB: frequency piers parsed during mode init */
 
994
                gen_chan_info = ee->ee_pwr_cal_b;
 
995
                break;
 
996
        case AR5K_EEPROM_MODE_11G:
 
997
                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 
998
                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
 
999
                        offset += AR5K_EEPROM_GROUP4_OFFSET;
 
1000
                else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
 
1001
                        offset += AR5K_EEPROM_GROUP2_OFFSET;
 
1002
 
 
1003
                /* NB: frequency piers parsed during mode init */
 
1004
                gen_chan_info = ee->ee_pwr_cal_g;
 
1005
                break;
 
1006
        default:
 
1007
                return -EINVAL;
 
1008
        }
 
1009
 
 
1010
        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 
1011
                chan_pcal_info = &gen_chan_info[i].rf5112_info;
 
1012
 
 
1013
                /* Power values in quarter dB
 
1014
                 * for the lower xpd gain curve
 
1015
                 * (0 dBm -> higher output power) */
 
1016
                for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
 
1017
                        AR5K_EEPROM_READ(offset++, val);
 
1018
                        chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
 
1019
                        chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
 
1020
                }
 
1021
 
 
1022
                /* PCDAC steps
 
1023
                 * corresponding to the above power
 
1024
                 * measurements */
 
1025
                AR5K_EEPROM_READ(offset++, val);
 
1026
                chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
 
1027
                chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
 
1028
                chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
 
1029
 
 
1030
                /* Power values in quarter dB
 
1031
                 * for the higher xpd gain curve
 
1032
                 * (18 dBm -> lower output power) */
 
1033
                AR5K_EEPROM_READ(offset++, val);
 
1034
                chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
 
1035
                chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
 
1036
 
 
1037
                AR5K_EEPROM_READ(offset++, val);
 
1038
                chan_pcal_info->pwr_x3[2] = (val & 0xff);
 
1039
 
 
1040
                /* PCDAC steps
 
1041
                 * corresponding to the above power
 
1042
                 * measurements (fixed) */
 
1043
                chan_pcal_info->pcdac_x3[0] = 20;
 
1044
                chan_pcal_info->pcdac_x3[1] = 35;
 
1045
                chan_pcal_info->pcdac_x3[2] = 63;
 
1046
 
 
1047
                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
 
1048
                        chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
 
1049
 
 
1050
                        /* Last xpd0 power level is also channel maximum */
 
1051
                        gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
 
1052
                } else {
 
1053
                        chan_pcal_info->pcdac_x0[0] = 1;
 
1054
                        gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
 
1055
                }
 
1056
 
 
1057
        }
 
1058
 
 
1059
        return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
 
1060
}
 
1061
 
 
1062
 
 
1063
/*
 
1064
 * Read power calibration for RF2413 chips
 
1065
 *
 
1066
 * For RF2413 we have a Power to PDDAC table (Power Detector)
 
1067
 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
 
1068
 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
 
1069
 * axis and looks like an exponential function like the RF5111 curve.
 
1070
 *
 
1071
 * To recreate the curves we read here the points and interpolate
 
1072
 * later. Note that in most cases only 2 (higher and lower) curves are
 
1073
 * used (like RF5112) but vendors have the oportunity to include all
 
1074
 * 4 curves on eeprom. The final curve (higher power) has an extra
 
1075
 * point for better accuracy like RF5112.
 
1076
 */
 
1077
 
 
1078
/* For RF2413 power calibration data doesn't start on a fixed location and
 
1079
 * if a mode is not supported, it's section is missing -not zeroed-.
 
1080
 * So we need to calculate the starting offset for each section by using
 
1081
 * these two functions */
 
1082
 
 
1083
/* Return the size of each section based on the mode and the number of pd
 
1084
 * gains available (maximum 4). */
 
1085
static inline unsigned int
 
1086
ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
 
1087
{
 
1088
        static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
 
1089
        unsigned int sz;
 
1090
 
 
1091
        sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
 
1092
        sz *= ee->ee_n_piers[mode];
 
1093
 
 
1094
        return sz;
 
1095
}
 
1096
 
 
1097
/* Return the starting offset for a section based on the modes supported
 
1098
 * and each section's size. */
 
1099
static unsigned int
 
1100
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
 
1101
{
 
1102
        u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
 
1103
 
 
1104
        switch(mode) {
 
1105
        case AR5K_EEPROM_MODE_11G:
 
1106
                if (AR5K_EEPROM_HDR_11B(ee->ee_header))
 
1107
                        offset += ath5k_pdgains_size_2413(ee,
 
1108
                                        AR5K_EEPROM_MODE_11B) +
 
1109
                                        AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
 
1110
                /* fall through */
 
1111
        case AR5K_EEPROM_MODE_11B:
 
1112
                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
 
1113
                        offset += ath5k_pdgains_size_2413(ee,
 
1114
                                        AR5K_EEPROM_MODE_11A) +
 
1115
                                        AR5K_EEPROM_N_5GHZ_CHAN / 2;
 
1116
                /* fall through */
 
1117
        case AR5K_EEPROM_MODE_11A:
 
1118
                break;
 
1119
        default:
 
1120
                break;
 
1121
        }
 
1122
 
 
1123
        return offset;
 
1124
}
 
1125
 
 
1126
/* Convert RF2413 specific data to generic raw data
 
1127
 * used by interpolation code */
 
1128
static int
 
1129
ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
 
1130
                                struct ath5k_chan_pcal_info *chinfo)
 
1131
{
 
1132
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1133
        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
 
1134
        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 
1135
        unsigned int pier, point;
 
1136
        int pdg;
 
1137
 
 
1138
        /* Fill raw data for each calibration pier */
 
1139
        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 
1140
 
 
1141
                pcinfo = &chinfo[pier].rf2413_info;
 
1142
 
 
1143
                /* Allocate pd_curves for this cal pier */
 
1144
                chinfo[pier].pd_curves =
 
1145
                                calloc(AR5K_EEPROM_N_PD_CURVES,
 
1146
                                       sizeof(struct ath5k_pdgain_info));
 
1147
 
 
1148
                if (!chinfo[pier].pd_curves)
 
1149
                        return -ENOMEM;
 
1150
 
 
1151
                /* Fill pd_curves */
 
1152
                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 
1153
 
 
1154
                        u8 idx = pdgain_idx[pdg];
 
1155
                        struct ath5k_pdgain_info *pd =
 
1156
                                        &chinfo[pier].pd_curves[idx];
 
1157
 
 
1158
                        /* One more point for the highest power
 
1159
                         * curve (lowest gain) */
 
1160
                        if (pdg == ee->ee_pd_gains[mode] - 1)
 
1161
                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
 
1162
                        else
 
1163
                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
 
1164
 
 
1165
                        /* Allocate pd points for this curve */
 
1166
                        pd->pd_step = calloc(pd->pd_points, sizeof(u8));
 
1167
 
 
1168
                        if (!pd->pd_step)
 
1169
                                return -ENOMEM;
 
1170
 
 
1171
                        pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
 
1172
 
 
1173
                        if (!pd->pd_pwr)
 
1174
                                return -ENOMEM;
 
1175
 
 
1176
                        /* Fill raw dataset
 
1177
                         * convert all pwr levels to
 
1178
                         * quarter dB for RF5112 combatibility */
 
1179
                        pd->pd_step[0] = pcinfo->pddac_i[pdg];
 
1180
                        pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
 
1181
 
 
1182
                        for (point = 1; point < pd->pd_points; point++) {
 
1183
 
 
1184
                                pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
 
1185
                                        2 * pcinfo->pwr[pdg][point - 1];
 
1186
 
 
1187
                                pd->pd_step[point] = pd->pd_step[point - 1] +
 
1188
                                                pcinfo->pddac[pdg][point - 1];
 
1189
 
 
1190
                        }
 
1191
 
 
1192
                        /* Highest gain curve -> min power */
 
1193
                        if (pdg == 0)
 
1194
                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 
1195
 
 
1196
                        /* Lowest gain curve -> max power */
 
1197
                        if (pdg == ee->ee_pd_gains[mode] - 1)
 
1198
                                chinfo[pier].max_pwr =
 
1199
                                        pd->pd_pwr[pd->pd_points - 1];
 
1200
                }
 
1201
        }
 
1202
 
 
1203
        return 0;
 
1204
}
 
1205
 
 
1206
/* Parse EEPROM data */
 
1207
static int
 
1208
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
 
1209
{
 
1210
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1211
        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
 
1212
        struct ath5k_chan_pcal_info *chinfo;
 
1213
        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 
1214
        u32 offset;
 
1215
        int idx, i, ret;
 
1216
        u16 val;
 
1217
        u8 pd_gains = 0;
 
1218
 
 
1219
        /* Count how many curves we have and
 
1220
         * identify them (which one of the 4
 
1221
         * available curves we have on each count).
 
1222
         * Curves are stored from higher to
 
1223
         * lower gain so we go backwards */
 
1224
        for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
 
1225
                /* ee_x_gain[mode] is x gain mask */
 
1226
                if ((ee->ee_x_gain[mode] >> idx) & 0x1)
 
1227
                        pdgain_idx[pd_gains++] = idx;
 
1228
 
 
1229
        }
 
1230
        ee->ee_pd_gains[mode] = pd_gains;
 
1231
 
 
1232
        if (pd_gains == 0)
 
1233
                return -EINVAL;
 
1234
 
 
1235
        offset = ath5k_cal_data_offset_2413(ee, mode);
 
1236
        switch (mode) {
 
1237
        case AR5K_EEPROM_MODE_11A:
 
1238
                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 
1239
                        return 0;
 
1240
 
 
1241
                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
 
1242
                offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
 
1243
                chinfo = ee->ee_pwr_cal_a;
 
1244
                break;
 
1245
        case AR5K_EEPROM_MODE_11B:
 
1246
                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 
1247
                        return 0;
 
1248
 
 
1249
                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
 
1250
                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
 
1251
                chinfo = ee->ee_pwr_cal_b;
 
1252
                break;
 
1253
        case AR5K_EEPROM_MODE_11G:
 
1254
                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 
1255
                        return 0;
 
1256
 
 
1257
                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
 
1258
                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
 
1259
                chinfo = ee->ee_pwr_cal_g;
 
1260
                break;
 
1261
        default:
 
1262
                return -EINVAL;
 
1263
        }
 
1264
 
 
1265
        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 
1266
                pcinfo = &chinfo[i].rf2413_info;
 
1267
 
 
1268
                /*
 
1269
                 * Read pwr_i, pddac_i and the first
 
1270
                 * 2 pd points (pwr, pddac)
 
1271
                 */
 
1272
                AR5K_EEPROM_READ(offset++, val);
 
1273
                pcinfo->pwr_i[0] = val & 0x1f;
 
1274
                pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
 
1275
                pcinfo->pwr[0][0] = (val >> 12) & 0xf;
 
1276
 
 
1277
                AR5K_EEPROM_READ(offset++, val);
 
1278
                pcinfo->pddac[0][0] = val & 0x3f;
 
1279
                pcinfo->pwr[0][1] = (val >> 6) & 0xf;
 
1280
                pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
 
1281
 
 
1282
                AR5K_EEPROM_READ(offset++, val);
 
1283
                pcinfo->pwr[0][2] = val & 0xf;
 
1284
                pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
 
1285
 
 
1286
                pcinfo->pwr[0][3] = 0;
 
1287
                pcinfo->pddac[0][3] = 0;
 
1288
 
 
1289
                if (pd_gains > 1) {
 
1290
                        /*
 
1291
                         * Pd gain 0 is not the last pd gain
 
1292
                         * so it only has 2 pd points.
 
1293
                         * Continue wih pd gain 1.
 
1294
                         */
 
1295
                        pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
 
1296
 
 
1297
                        pcinfo->pddac_i[1] = (val >> 15) & 0x1;
 
1298
                        AR5K_EEPROM_READ(offset++, val);
 
1299
                        pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
 
1300
 
 
1301
                        pcinfo->pwr[1][0] = (val >> 6) & 0xf;
 
1302
                        pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
 
1303
 
 
1304
                        AR5K_EEPROM_READ(offset++, val);
 
1305
                        pcinfo->pwr[1][1] = val & 0xf;
 
1306
                        pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
 
1307
                        pcinfo->pwr[1][2] = (val >> 10) & 0xf;
 
1308
 
 
1309
                        pcinfo->pddac[1][2] = (val >> 14) & 0x3;
 
1310
                        AR5K_EEPROM_READ(offset++, val);
 
1311
                        pcinfo->pddac[1][2] |= (val & 0xF) << 2;
 
1312
 
 
1313
                        pcinfo->pwr[1][3] = 0;
 
1314
                        pcinfo->pddac[1][3] = 0;
 
1315
                } else if (pd_gains == 1) {
 
1316
                        /*
 
1317
                         * Pd gain 0 is the last one so
 
1318
                         * read the extra point.
 
1319
                         */
 
1320
                        pcinfo->pwr[0][3] = (val >> 10) & 0xf;
 
1321
 
 
1322
                        pcinfo->pddac[0][3] = (val >> 14) & 0x3;
 
1323
                        AR5K_EEPROM_READ(offset++, val);
 
1324
                        pcinfo->pddac[0][3] |= (val & 0xF) << 2;
 
1325
                }
 
1326
 
 
1327
                /*
 
1328
                 * Proceed with the other pd_gains
 
1329
                 * as above.
 
1330
                 */
 
1331
                if (pd_gains > 2) {
 
1332
                        pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
 
1333
                        pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
 
1334
 
 
1335
                        AR5K_EEPROM_READ(offset++, val);
 
1336
                        pcinfo->pwr[2][0] = (val >> 0) & 0xf;
 
1337
                        pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
 
1338
                        pcinfo->pwr[2][1] = (val >> 10) & 0xf;
 
1339
 
 
1340
                        pcinfo->pddac[2][1] = (val >> 14) & 0x3;
 
1341
                        AR5K_EEPROM_READ(offset++, val);
 
1342
                        pcinfo->pddac[2][1] |= (val & 0xF) << 2;
 
1343
 
 
1344
                        pcinfo->pwr[2][2] = (val >> 4) & 0xf;
 
1345
                        pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
 
1346
 
 
1347
                        pcinfo->pwr[2][3] = 0;
 
1348
                        pcinfo->pddac[2][3] = 0;
 
1349
                } else if (pd_gains == 2) {
 
1350
                        pcinfo->pwr[1][3] = (val >> 4) & 0xf;
 
1351
                        pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
 
1352
                }
 
1353
 
 
1354
                if (pd_gains > 3) {
 
1355
                        pcinfo->pwr_i[3] = (val >> 14) & 0x3;
 
1356
                        AR5K_EEPROM_READ(offset++, val);
 
1357
                        pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
 
1358
 
 
1359
                        pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
 
1360
                        pcinfo->pwr[3][0] = (val >> 10) & 0xf;
 
1361
                        pcinfo->pddac[3][0] = (val >> 14) & 0x3;
 
1362
 
 
1363
                        AR5K_EEPROM_READ(offset++, val);
 
1364
                        pcinfo->pddac[3][0] |= (val & 0xF) << 2;
 
1365
                        pcinfo->pwr[3][1] = (val >> 4) & 0xf;
 
1366
                        pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
 
1367
 
 
1368
                        pcinfo->pwr[3][2] = (val >> 14) & 0x3;
 
1369
                        AR5K_EEPROM_READ(offset++, val);
 
1370
                        pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
 
1371
 
 
1372
                        pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
 
1373
                        pcinfo->pwr[3][3] = (val >> 8) & 0xf;
 
1374
 
 
1375
                        pcinfo->pddac[3][3] = (val >> 12) & 0xF;
 
1376
                        AR5K_EEPROM_READ(offset++, val);
 
1377
                        pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
 
1378
                } else if (pd_gains == 3) {
 
1379
                        pcinfo->pwr[2][3] = (val >> 14) & 0x3;
 
1380
                        AR5K_EEPROM_READ(offset++, val);
 
1381
                        pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
 
1382
 
 
1383
                        pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
 
1384
                }
 
1385
        }
 
1386
 
 
1387
        return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
 
1388
}
 
1389
 
 
1390
 
 
1391
/*
 
1392
 * Read per rate target power (this is the maximum tx power
 
1393
 * supported by the card). This info is used when setting
 
1394
 * tx power, no matter the channel.
 
1395
 *
 
1396
 * This also works for v5 EEPROMs.
 
1397
 */
 
1398
static int
 
1399
ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
 
1400
{
 
1401
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1402
        struct ath5k_rate_pcal_info *rate_pcal_info;
 
1403
        u8 *rate_target_pwr_num;
 
1404
        u32 offset;
 
1405
        u16 val;
 
1406
        int ret, i;
 
1407
 
 
1408
        offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
 
1409
        rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
 
1410
        switch (mode) {
 
1411
        case AR5K_EEPROM_MODE_11A:
 
1412
                offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
 
1413
                rate_pcal_info = ee->ee_rate_tpwr_a;
 
1414
                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
 
1415
                break;
 
1416
        case AR5K_EEPROM_MODE_11B:
 
1417
                offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
 
1418
                rate_pcal_info = ee->ee_rate_tpwr_b;
 
1419
                ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
 
1420
                break;
 
1421
        case AR5K_EEPROM_MODE_11G:
 
1422
                offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
 
1423
                rate_pcal_info = ee->ee_rate_tpwr_g;
 
1424
                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
 
1425
                break;
 
1426
        default:
 
1427
                return -EINVAL;
 
1428
        }
 
1429
 
 
1430
        /* Different freq mask for older eeproms (<= v3.2) */
 
1431
        if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
 
1432
                for (i = 0; i < (*rate_target_pwr_num); i++) {
 
1433
                        AR5K_EEPROM_READ(offset++, val);
 
1434
                        rate_pcal_info[i].freq =
 
1435
                            ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
 
1436
 
 
1437
                        rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
 
1438
                        rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
 
1439
 
 
1440
                        AR5K_EEPROM_READ(offset++, val);
 
1441
 
 
1442
                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
 
1443
                            val == 0) {
 
1444
                                (*rate_target_pwr_num) = i;
 
1445
                                break;
 
1446
                        }
 
1447
 
 
1448
                        rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
 
1449
                        rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
 
1450
                        rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
 
1451
                }
 
1452
        } else {
 
1453
                for (i = 0; i < (*rate_target_pwr_num); i++) {
 
1454
                        AR5K_EEPROM_READ(offset++, val);
 
1455
                        rate_pcal_info[i].freq =
 
1456
                            ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 
1457
 
 
1458
                        rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
 
1459
                        rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
 
1460
 
 
1461
                        AR5K_EEPROM_READ(offset++, val);
 
1462
 
 
1463
                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
 
1464
                            val == 0) {
 
1465
                                (*rate_target_pwr_num) = i;
 
1466
                                break;
 
1467
                        }
 
1468
 
 
1469
                        rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
 
1470
                        rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
 
1471
                        rate_pcal_info[i].target_power_54 = (val & 0x3f);
 
1472
                }
 
1473
        }
 
1474
 
 
1475
        return 0;
 
1476
}
 
1477
 
 
1478
/*
 
1479
 * Read per channel calibration info from EEPROM
 
1480
 *
 
1481
 * This info is used to calibrate the baseband power table. Imagine
 
1482
 * that for each channel there is a power curve that's hw specific
 
1483
 * (depends on amplifier etc) and we try to "correct" this curve using
 
1484
 * offests we pass on to phy chip (baseband -> before amplifier) so that
 
1485
 * it can use accurate power values when setting tx power (takes amplifier's
 
1486
 * performance on each channel into account).
 
1487
 *
 
1488
 * EEPROM provides us with the offsets for some pre-calibrated channels
 
1489
 * and we have to interpolate to create the full table for these channels and
 
1490
 * also the table for any channel.
 
1491
 */
 
1492
static int
 
1493
ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
 
1494
{
 
1495
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1496
        int (*read_pcal)(struct ath5k_hw *hw, int mode);
 
1497
        int mode;
 
1498
        int err;
 
1499
 
 
1500
        if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
 
1501
                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
 
1502
                read_pcal = ath5k_eeprom_read_pcal_info_5112;
 
1503
        else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
 
1504
                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
 
1505
                read_pcal = ath5k_eeprom_read_pcal_info_2413;
 
1506
        else
 
1507
                read_pcal = ath5k_eeprom_read_pcal_info_5111;
 
1508
 
 
1509
 
 
1510
        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
 
1511
        mode++) {
 
1512
                err = read_pcal(ah, mode);
 
1513
                if (err)
 
1514
                        return err;
 
1515
 
 
1516
                err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
 
1517
                if (err < 0)
 
1518
                        return err;
 
1519
        }
 
1520
 
 
1521
        return 0;
 
1522
}
 
1523
 
 
1524
static int
 
1525
ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
 
1526
{
 
1527
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1528
        struct ath5k_chan_pcal_info *chinfo;
 
1529
        u8 pier, pdg;
 
1530
 
 
1531
        switch (mode) {
 
1532
        case AR5K_EEPROM_MODE_11A:
 
1533
                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 
1534
                        return 0;
 
1535
                chinfo = ee->ee_pwr_cal_a;
 
1536
                break;
 
1537
        case AR5K_EEPROM_MODE_11B:
 
1538
                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 
1539
                        return 0;
 
1540
                chinfo = ee->ee_pwr_cal_b;
 
1541
                break;
 
1542
        case AR5K_EEPROM_MODE_11G:
 
1543
                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 
1544
                        return 0;
 
1545
                chinfo = ee->ee_pwr_cal_g;
 
1546
                break;
 
1547
        default:
 
1548
                return -EINVAL;
 
1549
        }
 
1550
 
 
1551
        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 
1552
                if (!chinfo[pier].pd_curves)
 
1553
                        continue;
 
1554
 
 
1555
                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 
1556
                        struct ath5k_pdgain_info *pd =
 
1557
                                        &chinfo[pier].pd_curves[pdg];
 
1558
 
 
1559
                        if (pd != NULL) {
 
1560
                                free(pd->pd_step);
 
1561
                                free(pd->pd_pwr);
 
1562
                        }
 
1563
                }
 
1564
 
 
1565
                free(chinfo[pier].pd_curves);
 
1566
        }
 
1567
 
 
1568
        return 0;
 
1569
}
 
1570
 
 
1571
void
 
1572
ath5k_eeprom_detach(struct ath5k_hw *ah)
 
1573
{
 
1574
        u8 mode;
 
1575
 
 
1576
        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
 
1577
                ath5k_eeprom_free_pcal_info(ah, mode);
 
1578
}
 
1579
 
 
1580
/* Read conformance test limits used for regulatory control */
 
1581
static int
 
1582
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
 
1583
{
 
1584
        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 
1585
        struct ath5k_edge_power *rep;
 
1586
        unsigned int fmask, pmask;
 
1587
        unsigned int ctl_mode;
 
1588
        int ret, i, j;
 
1589
        u32 offset;
 
1590
        u16 val;
 
1591
 
 
1592
        pmask = AR5K_EEPROM_POWER_M;
 
1593
        fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
 
1594
        offset = AR5K_EEPROM_CTL(ee->ee_version);
 
1595
        ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
 
1596
        for (i = 0; i < ee->ee_ctls; i += 2) {
 
1597
                AR5K_EEPROM_READ(offset++, val);
 
1598
                ee->ee_ctl[i] = (val >> 8) & 0xff;
 
1599
                ee->ee_ctl[i + 1] = val & 0xff;
 
1600
        }
 
1601
 
 
1602
        offset = AR5K_EEPROM_GROUP8_OFFSET;
 
1603
        if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
 
1604
                offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
 
1605
                        AR5K_EEPROM_GROUP5_OFFSET;
 
1606
        else
 
1607
                offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
 
1608
 
 
1609
        rep = ee->ee_ctl_pwr;
 
1610
        for(i = 0; i < ee->ee_ctls; i++) {
 
1611
                switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
 
1612
                case AR5K_CTL_11A:
 
1613
                case AR5K_CTL_TURBO:
 
1614
                        ctl_mode = AR5K_EEPROM_MODE_11A;
 
1615
                        break;
 
1616
                default:
 
1617
                        ctl_mode = AR5K_EEPROM_MODE_11G;
 
1618
                        break;
 
1619
                }
 
1620
                if (ee->ee_ctl[i] == 0) {
 
1621
                        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
 
1622
                                offset += 8;
 
1623
                        else
 
1624
                                offset += 7;
 
1625
                        rep += AR5K_EEPROM_N_EDGES;
 
1626
                        continue;
 
1627
                }
 
1628
                if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 
1629
                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
 
1630
                                AR5K_EEPROM_READ(offset++, val);
 
1631
                                rep[j].freq = (val >> 8) & fmask;
 
1632
                                rep[j + 1].freq = val & fmask;
 
1633
                        }
 
1634
                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
 
1635
                                AR5K_EEPROM_READ(offset++, val);
 
1636
                                rep[j].edge = (val >> 8) & pmask;
 
1637
                                rep[j].flag = (val >> 14) & 1;
 
1638
                                rep[j + 1].edge = val & pmask;
 
1639
                                rep[j + 1].flag = (val >> 6) & 1;
 
1640
                        }
 
1641
                } else {
 
1642
                        AR5K_EEPROM_READ(offset++, val);
 
1643
                        rep[0].freq = (val >> 9) & fmask;
 
1644
                        rep[1].freq = (val >> 2) & fmask;
 
1645
                        rep[2].freq = (val << 5) & fmask;
 
1646
 
 
1647
                        AR5K_EEPROM_READ(offset++, val);
 
1648
                        rep[2].freq |= (val >> 11) & 0x1f;
 
1649
                        rep[3].freq = (val >> 4) & fmask;
 
1650
                        rep[4].freq = (val << 3) & fmask;
 
1651
 
 
1652
                        AR5K_EEPROM_READ(offset++, val);
 
1653
                        rep[4].freq |= (val >> 13) & 0x7;
 
1654
                        rep[5].freq = (val >> 6) & fmask;
 
1655
                        rep[6].freq = (val << 1) & fmask;
 
1656
 
 
1657
                        AR5K_EEPROM_READ(offset++, val);
 
1658
                        rep[6].freq |= (val >> 15) & 0x1;
 
1659
                        rep[7].freq = (val >> 8) & fmask;
 
1660
 
 
1661
                        rep[0].edge = (val >> 2) & pmask;
 
1662
                        rep[1].edge = (val << 4) & pmask;
 
1663
 
 
1664
                        AR5K_EEPROM_READ(offset++, val);
 
1665
                        rep[1].edge |= (val >> 12) & 0xf;
 
1666
                        rep[2].edge = (val >> 6) & pmask;
 
1667
                        rep[3].edge = val & pmask;
 
1668
 
 
1669
                        AR5K_EEPROM_READ(offset++, val);
 
1670
                        rep[4].edge = (val >> 10) & pmask;
 
1671
                        rep[5].edge = (val >> 4) & pmask;
 
1672
                        rep[6].edge = (val << 2) & pmask;
 
1673
 
 
1674
                        AR5K_EEPROM_READ(offset++, val);
 
1675
                        rep[6].edge |= (val >> 14) & 0x3;
 
1676
                        rep[7].edge = (val >> 8) & pmask;
 
1677
                }
 
1678
                for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
 
1679
                        rep[j].freq = ath5k_eeprom_bin2freq(ee,
 
1680
                                rep[j].freq, ctl_mode);
 
1681
                }
 
1682
                rep += AR5K_EEPROM_N_EDGES;
 
1683
        }
 
1684
 
 
1685
        return 0;
 
1686
}
 
1687
 
 
1688
 
 
1689
/*
 
1690
 * Initialize eeprom power tables
 
1691
 */
 
1692
int
 
1693
ath5k_eeprom_init(struct ath5k_hw *ah)
 
1694
{
 
1695
        int err;
 
1696
 
 
1697
        err = ath5k_eeprom_init_header(ah);
 
1698
        if (err < 0)
 
1699
                return err;
 
1700
 
 
1701
        err = ath5k_eeprom_init_modes(ah);
 
1702
        if (err < 0)
 
1703
                return err;
 
1704
 
 
1705
        err = ath5k_eeprom_read_pcal_info(ah);
 
1706
        if (err < 0)
 
1707
                return err;
 
1708
 
 
1709
        err = ath5k_eeprom_read_ctl_info(ah);
 
1710
        if (err < 0)
 
1711
                return err;
 
1712
 
 
1713
        return 0;
 
1714
}
 
1715
 
 
1716
/*
 
1717
 * Read the MAC address from eeprom
 
1718
 */
 
1719
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
 
1720
{
 
1721
        u8 mac_d[ETH_ALEN] = {};
 
1722
        u32 total, offset;
 
1723
        u16 data;
 
1724
        int octet, ret;
 
1725
 
 
1726
        ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
 
1727
        if (ret)
 
1728
                return ret;
 
1729
 
 
1730
        for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
 
1731
                ret = ath5k_hw_eeprom_read(ah, offset, &data);
 
1732
                if (ret)
 
1733
                        return ret;
 
1734
 
 
1735
                total += data;
 
1736
                mac_d[octet + 1] = data & 0xff;
 
1737
                mac_d[octet] = data >> 8;
 
1738
                octet += 2;
 
1739
        }
 
1740
 
 
1741
        if (!total || total == 3 * 0xffff)
 
1742
                return -EINVAL;
 
1743
 
 
1744
        memcpy(mac, mac_d, ETH_ALEN);
 
1745
 
 
1746
        return 0;
 
1747
}
 
1748
 
 
1749
int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
 
1750
{
 
1751
        u16 data;
 
1752
 
 
1753
        ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
 
1754
 
 
1755
        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
 
1756
                return 1;
 
1757
        else
 
1758
                return 0;
 
1759
}
 
1760